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Context

Unmanned aerial vehicles (UAVs) provide a flexible solution for civilian applications,
e.g. last-mile delivery, environmental monitoring or emergency response.

UAV fleets can perform on-demand missions to attend to aerial services requests
that are sparsely distributed over a geographical region.
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Background

The deployment of multi-UAV fleets to perform aerial services requires a chain of
decisions on different levels and temporal scales:

Strategic level long-term design decisions related to the dimension of the fleet,
e.g, the number of vehicles in the network, the type of vehicles and
desired characteristics;

Tactical level mid-term planning decisions regarding network configurations for
different demand scenarios and deployment strategies, targeting
availability and costs;

Operational level short-term operational decisions concerning vehicle routing,
scheduling strategies and trajectory optimization for mission-
oriented performance.
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Problem
Dimensioning and Design of Multi-UAV Fleets

Challenges

= UAVs have stringent energy constraints, thus flights have a limited range

= demand characteristics and variations influences system performance

Proposed Approach

* pbuild decentralized networked systems using clustering-bbased fuzzy partitioning

= derive density structure to dimension the multi-UAV systems with adequate
vehicle-types

= design fleet configurations with the required UAVs to satisfy demand




Demand Modeling

The demand of aerial services can be modeled as a stochastic process describing a
spatiotemporal pattern using Poisson point processes.

The requests are defined by location and request time, L(z,y,tR), are independent
random variables, which for a given time interval, 7, have constant average spatial
rates of occurrence for a bounded area, A, and that the average rate (requests per
time period) is constant.

= The spatial demand is represented according to a discrete Poisson distribution.

= The temporal uncertainty of the demand is described by the variability in the interval
of time between consecutive requests, which follows a continuous decaying
exponential distribution.




Demand Modeling
Load Level

To establish different load levels, high and low
workload scenarios are modeled by selecting
distinct spatial and temporal intensities.

The process will be considered stationary, i.e.
the average spatial and temporal intensities
do not vary throughout the time-horizon.
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Demand Modeling
Process Type

For the homogeneous case, the spatial
coordinates (x,y) are generated by a uniform
distribution within the limits of the specified
bounded area A.

For the nonhomogeneous case, the spatial
coordinates can be generated by a spatially
varying deterministic intensity function A(z,y),
where points are eliminated or retained
according to a probability which depends on
spatial location:

Alz,y) = 2(2* +y°)
p(il?, y) — A(zvoy)/)‘max

Demand Density represented usin
Kernel Distribution Estimation (KDE
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Demand Modeling
Scenarios

By using distinct load levels, high and low workload scenarios can be modelled for both
homogeneous and honhomogeneous processes.
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Clustering-based graph Partitioning

= The problem of deploying UAVs to perform surveillance or monitoring tasks over
extensive areas with a high number of aerial services can become a very complex
resource adllocation problem.

= Due to the energy constraints of aerial platforms, many solutions are unfeasible.

= To handle this issue, a decentralized approach is proposed based on clustering
methods, which divides the problem into multiple subgraphs, enabling solving
simpler problems in parallel by limiting the size of the search space.

Decentralized Fuzzy Approach Advantages

improved flexibility reduced computational burden increased fault-tolerance




Graph Model

To build decentralized networks of multi-UAV fleets the demand is represented
through graphs:

= Global network model = supergraph

= Decentralized network model — subgraphs

Demand dataset

= Based on the spatiotemporal demand models presented, the locations of aerial

service requests in LLA (Latitude, Longitude, Altitude) referential are converted to
cartesian space (X,Y, Z ) in the NED (North, East, Down) coordinate system.

AN

= Demand density, A, at each location is estimated using Kernel Density Estimation.
Given N samples:

Z — [Z17Z27-.-7ZN] with Zk — [X7Y7 Z7 5\],1—1
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Demand-driven Clustering

Objective
Combine spatial and intensity measures to represent demand characteristics

Distance measures

= Mahalanobis distance — adaptive squared inner norm for fuzzy clustering

= Core distance — based on Eucledian distance to the n-th neighbor

Demand Density Estimates

= Kernel Density Estimate (KDE) — translates the number of missions per area

= Mutual Reachability Distance (MRD) — conveys the proximity of nearby missions
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Demand-driven Clustering for
Multi-UAV Networks Algorithm

Data Z = [z1,22,...,2zN] datasetwith k=1,2,...,N samples
S scenario parometer dictionary
= [X,Y, Z, >\] in NED coordinates and KDE density estimate

Stage 1 build decentralized networks with GK fuzzy clustering
for Z do
| compute fuzzy partition with C clusters and fuzziness m;

Stage 2  extract inner-cluster density structure with MST
for Z do
L dcore := distance to the n-th neighbor;

compute mutual reachability graph and derive MST

Stage 3 design fleet configurations with available vehicle-types
foreach Z; € Z = [Z1,2Z2,...,7Z¢] do
build configuration solutions if feasible then
compute clusterCost;

evaluate globalCost;
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Results

Experiments were performed for a case-study
based on real locations from rural areas in the
central region of Portugal, where there is
typically increased fire hazard.

Special attention was given to the analysis of
a case resembling an active fire monitoring
mission (ie, inhomogeneous with high
workload)

= Fuzzy Gustafson-Kessel Clustering Algorithm
partitions the total workload into two fleets;

= Mutual  Reachability  Distance  clearly
distinguishes areas with higher concentration
of services, which informs vehicle selection.
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Results

Heavy-Load Scenarios (non—homogeneous case)

Clusters C Aerial Vehicles, ¢, Aerial Vehicles, C, Global Cost

MR(1), FW(4) 37872 MR(1), Fw(1) m27 48999
2 1.2 MR(1), FW(3) 24554 MR(1), Fw(1) 9747 34301
1.5 MR(1), FW(2) 22794 MR(1), FW(4) 38152 60946

mo - ®w jncreasing redundancy enables a
w0 more efficient system cost-wise

1250

= higher fault-tolerance implies «
o significant cost increase in non-
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Results

Light-Load Scenarios (homogeneous case)

Clusters C Aerial Vehicles, ¢ Aerial Vehicles, C, Global Cost

MR(1), FW(2) 20959 MR(0), FW(2) 17432 383091
2 1.2 MR(1), FW(2) 20959 MR(0), FW(2) 17432 38391
1.5 MR(0), FW(2) 17306 MR(0), FW(3) 23809 41115
o - I3500 = varying the degree of overlap does
| a0 NOt provide particular improvement

»0 N light-load cases cost-wise;

2000

P w can be beneficial if flexibility and
I1000 improved fault-tolerance is desired
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Results

Clusters C Aerial Vehicles, ¢ Aerial Vehicles, C, Global Cost

MR(1), FW(2) 20959 MR(0), FW(2) 17432 383091
2 1.2 MR(1), FW(2) 20959 MR(0), FW(2) 17432 383091
1.5 MR(0), FW(2) 17306 MR(0), FW(3) 23809 41115

Heavy-Load Scenarios (non—homogeneous case)
Clusters C Aerial Vehicles, Aerial Vehicles, C, Global Cost

MR(1), FW(4) 37872 MR(1), Fw(1) 1127 48999
2 1.2 MR(1), FW(3) 24554 MR(1), Fw(1) 9747 34301
1.5 MR(1), FW(2) 22794 MR(1), FW(4) 38152 60946
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Conclusion

Highlights

= decentralized approach takes into account vehicle characteristics and energy
constraints;

= py dimensioning the problem using a demand-driven approach, the design and
deployment problems become simpler to address,;

= using fuzzy boundaries as a design strategy enables the application of cooperative
resource allocation frameworks;

Future Work

= introduce dynamic intensity levels in demand modeling, and include time-windows and
priority levels for the tasks;

= develop frameworks for cooperation between neighboring fleets.
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