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Unmanned aerial vehicles (UAVs) provide a flexible solution for civilian applications,
e.g. last-mile delivery, environmental monitoring or emergency response.

UAV fleets can perform on-demand missions to attend to aerial services requests
that are sparsely distributed over a geographical region.
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long-term design decisions related to the dimension of the fleet,
e.g., the number of vehicles in the network, the type of vehicles and
desired characteristics;

mid-term planning decisions regarding network configurations for
different demand scenarios and deployment strategies, targeting
availability and costs;

Strategic level

Tactical level

Background

Operational level short-term operational decisions concerning vehicle routing,
scheduling strategies and trajectory optimization for mission-
oriented performance.

The deployment of multi-UAV fleets to perform aerial services requires a chain of
decisions on different levels and temporal scales:
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Proposed Approach
§ build decentralized networked systems using clustering-based fuzzy partitioning
§ derive density structure to dimension the multi-UAV systems with adequate

vehicle-types
§ design fleet configurations with the required UAVs to satisfy demand

Problem
Dimensioning and Design of Multi-UAV Fleets 
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Challenges
§ UAVs have stringent energy constraints, thus flights have a limited range
§ demand characteristics and variations influences system performance



Demand Modeling
§ The demand of aerial services can be modeled as a stochastic process describing a

spatiotemporal pattern using Poisson point processes.
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§ The requests are defined by location and request time, , are independent
random variables, which for a given time interval, , have constant average spatial
rates of occurrence for a bounded area, , and that the average rate (requests per
time period) is constant.

Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]−1, as follows:

FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0
µte

−µttdt = 1− e−µtτ

[
FExp(τ ;µt)

]−1
= − ln(1−τ)

µt
= T (3)

with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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Fig. 3: Demand modeling with Poisson point process: (a) spatial uncertainty modeled with Poisson distribution repre-
sents the variability of the number of requests occurring per time interval in a specific area; (b) temporal uncertainty
concerns the variability in the time between requests, modeled with a continuous decaying exponential distribution.

Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:
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with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.
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with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]−1, as follows:
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with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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§ The spatial demand is represented according to a discrete Poisson distribution.

§ The temporal uncertainty of the demand is described by the variability in the interval
of time between consecutive requests, which follows a continuous decaying
exponential distribution.
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To establish different load levels, high and low
workload scenarios are modeled by selecting
distinct spatial and temporal intensities.

The process will be considered stationary, i.e.
the average spatial and temporal intensities
do not vary throughout the time-horizon.

Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]−1, as follows:

FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0
µte

−µttdt = 1− e−µtτ

[
FExp(τ ;µt)

]−1
= − ln(1−τ)

µt
= T (3)

with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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concerns the variability in the time between requests, modeled with a continuous decaying exponential distribution.

Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]−1, as follows:

FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0
µte

−µttdt = 1− e−µtτ

[
FExp(τ ;µt)

]−1
= − ln(1−τ)

µt
= T (3)

with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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For the nonhomogeneous case, the spatial
coordinates can be generated by a spatially
varying deterministic intensity function ,
where points are eliminated or retained
according to a probability which depends on
spatial location:

2) Process Type (homogeneous vs. nonhomogeneous):
The spatial structure of Poisson point processes can have
distinct distributions, which for this problem influences how
the mission requests are spread over the area of interest.
For the homogeneous case, the spatial coordinates (x, y) are
generated by a uniform distribution within the limits of the
specified bounded area A, defined as a polygon or a multi-
polygon. In turn, for the nonhomogeneous or inhomogeneous
case, the spatial coordinates can be generated by a spatially
varying deterministic intensity function Λ(x, y), through a
thinning procedure of a homogeneous point process of inten-
sity λmax, where points are eliminated or retained according
to a probability which depends on spatial location, p(x, y) [6].
An example of the difference between homogeneous and
nonhomogeneous processes is presented in Fig. 4 with the
following intensity function for the nonhomogeneous case:

Λ(x, y) = 2(x2 + y2) (4)
p(x, y) = Λ(x, y)/λmax (5)

In this context, these differences allow simulating in a
generic sense e.g. patrolling missions where a large area has
to be monitored periodically (homogeneous), or active fire
monitoring scenarios where mission requests are more likely to
be concentrated in a particular area (nonhomogeneous). Hence,
for comparison purposes the thinning process is implemented
with a stop criterium to halt when the number of requests
matches the load level from the Poisson distribution, enabling
the evaluation of different processes with the same load level.

In this way, the parametrization of the load level and
process type allows modeling the demand and generating
the mission requests for simulation. Considering different
vehicle types have distinct flight endurance characteristics,

the density of mission requests will impact the optimization
of the configuration of multi-UAV fleets. For instance, the
high maneuverability is one advantage of multi-rotor drones,
however this reduces the flight endurance, thus restricting
missions to a limited range. Conversely, fixed-wing drones
have the benefit of harnessing the aerodynamic lift, which
enables longer flights. Therefore, for short-range missions in
an area with higher number of missions multi-rotors are more
well-suited, whereas for performing long-range missions fixed-
wing drones are a better alternative. For these reasons, the way
the requests are spread has to be subsequently estimated.

3) Demand Density: To measure the density of requests per
unit area, i.e. an estimate of the spatial intensity function of the
point pattern, this work uses kernel density estimation (KDE)
based on the convolution of isotropic Gaussian kernels [7]–[9].

Let L = {ℓ1, . . . , ℓn} denote the request locations in
bidimensional (2D) space, belonging to a bounded area A. The
fixed-bandwidth kernel density estimate of the intensity func-
tion, i.e. the local intensity estimate at location pi, is given by:

λ̂(pi) =
1

nh2

n∑

i=1

κ

(
pi − ℓi

h

)
e(pi)

−1 pi ∈ A (6)

where κ denotes the 2D Gaussian smoothing kernel, h > 0
is the smoothing parameter (i.e. the bandwidth), and e(pi)
represents an edge-correction factor [10]. Note that herein the
temporal data is not considered for density estimation, as the
multi-UAV fleets are to be dimensioned for the period of the
time horizon, in this case based on a 5-day forecast. Recalling
Fig. 4 comparing variable spatial distribution and load levels,
the density estimation enables identifying zones with a higher
number of mission requests as described by the color schema.
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Fig. 4: Demand distribution comparison for a 5-day period: (a) and (b) homogeneous (uniform), with low and high
load, respectively; (c) and (d) nonhomogeneous, with low and high load, respectively;

2) Process Type (homogeneous vs. nonhomogeneous):
The spatial structure of Poisson point processes can have
distinct distributions, which for this problem influences how
the mission requests are spread over the area of interest.
For the homogeneous case, the spatial coordinates (x, y) are
generated by a uniform distribution within the limits of the
specified bounded area A, defined as a polygon or a multi-
polygon. In turn, for the nonhomogeneous or inhomogeneous
case, the spatial coordinates can be generated by a spatially
varying deterministic intensity function Λ(x, y), through a
thinning procedure of a homogeneous point process of inten-
sity λmax, where points are eliminated or retained according
to a probability which depends on spatial location, p(x, y) [6].
An example of the difference between homogeneous and
nonhomogeneous processes is presented in Fig. 4 with the
following intensity function for the nonhomogeneous case:

Λ(x, y) = 2(x2 + y2) (4)
p(x, y) = Λ(x, y)/λmax (5)

In this context, these differences allow simulating in a
generic sense e.g. patrolling missions where a large area has
to be monitored periodically (homogeneous), or active fire
monitoring scenarios where mission requests are more likely to
be concentrated in a particular area (nonhomogeneous). Hence,
for comparison purposes the thinning process is implemented
with a stop criterium to halt when the number of requests
matches the load level from the Poisson distribution, enabling
the evaluation of different processes with the same load level.

In this way, the parametrization of the load level and
process type allows modeling the demand and generating
the mission requests for simulation. Considering different
vehicle types have distinct flight endurance characteristics,

the density of mission requests will impact the optimization
of the configuration of multi-UAV fleets. For instance, the
high maneuverability is one advantage of multi-rotor drones,
however this reduces the flight endurance, thus restricting
missions to a limited range. Conversely, fixed-wing drones
have the benefit of harnessing the aerodynamic lift, which
enables longer flights. Therefore, for short-range missions in
an area with higher number of missions multi-rotors are more
well-suited, whereas for performing long-range missions fixed-
wing drones are a better alternative. For these reasons, the way
the requests are spread has to be subsequently estimated.

3) Demand Density: To measure the density of requests per
unit area, i.e. an estimate of the spatial intensity function of the
point pattern, this work uses kernel density estimation (KDE)
based on the convolution of isotropic Gaussian kernels [7]–[9].

Let L = {ℓ1, . . . , ℓn} denote the request locations in
bidimensional (2D) space, belonging to a bounded area A. The
fixed-bandwidth kernel density estimate of the intensity func-
tion, i.e. the local intensity estimate at location pi, is given by:

λ̂(pi) =
1

nh2

n∑

i=1

κ

(
pi − ℓi

h

)
e(pi)

−1 pi ∈ A (6)

where κ denotes the 2D Gaussian smoothing kernel, h > 0
is the smoothing parameter (i.e. the bandwidth), and e(pi)
represents an edge-correction factor [10]. Note that herein the
temporal data is not considered for density estimation, as the
multi-UAV fleets are to be dimensioned for the period of the
time horizon, in this case based on a 5-day forecast. Recalling
Fig. 4 comparing variable spatial distribution and load levels,
the density estimation enables identifying zones with a higher
number of mission requests as described by the color schema.
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Fig. 4: Demand distribution comparison for a 5-day period: (a) and (b) homogeneous (uniform), with low and high
load, respectively; (c) and (d) nonhomogeneous, with low and high load, respectively;

For the homogeneous case, the spatial
coordinates are generated by a uniform
distribution within the limits of the specified
bounded area .

2) Process Type (homogeneous vs. nonhomogeneous):
The spatial structure of Poisson point processes can have
distinct distributions, which for this problem influences how
the mission requests are spread over the area of interest.
For the homogeneous case, the spatial coordinates (x, y) are
generated by a uniform distribution within the limits of the
specified bounded area A, defined as a polygon or a multi-
polygon. In turn, for the nonhomogeneous or inhomogeneous
case, the spatial coordinates can be generated by a spatially
varying deterministic intensity function Λ(x, y), through a
thinning procedure of a homogeneous point process of inten-
sity λmax, where points are eliminated or retained according
to a probability which depends on spatial location, p(x, y) [6].
An example of the difference between homogeneous and
nonhomogeneous processes is presented in Fig. 4 with the
following intensity function for the nonhomogeneous case:

Λ(x, y) = 2(x2 + y2) (4)
p(x, y) = Λ(x, y)/λmax (5)

In this context, these differences allow simulating in a
generic sense e.g. patrolling missions where a large area has
to be monitored periodically (homogeneous), or active fire
monitoring scenarios where mission requests are more likely to
be concentrated in a particular area (nonhomogeneous). Hence,
for comparison purposes the thinning process is implemented
with a stop criterium to halt when the number of requests
matches the load level from the Poisson distribution, enabling
the evaluation of different processes with the same load level.

In this way, the parametrization of the load level and
process type allows modeling the demand and generating
the mission requests for simulation. Considering different
vehicle types have distinct flight endurance characteristics,

the density of mission requests will impact the optimization
of the configuration of multi-UAV fleets. For instance, the
high maneuverability is one advantage of multi-rotor drones,
however this reduces the flight endurance, thus restricting
missions to a limited range. Conversely, fixed-wing drones
have the benefit of harnessing the aerodynamic lift, which
enables longer flights. Therefore, for short-range missions in
an area with higher number of missions multi-rotors are more
well-suited, whereas for performing long-range missions fixed-
wing drones are a better alternative. For these reasons, the way
the requests are spread has to be subsequently estimated.

3) Demand Density: To measure the density of requests per
unit area, i.e. an estimate of the spatial intensity function of the
point pattern, this work uses kernel density estimation (KDE)
based on the convolution of isotropic Gaussian kernels [7]–[9].

Let L = {ℓ1, . . . , ℓn} denote the request locations in
bidimensional (2D) space, belonging to a bounded area A. The
fixed-bandwidth kernel density estimate of the intensity func-
tion, i.e. the local intensity estimate at location pi, is given by:

λ̂(pi) =
1

nh2

n∑

i=1

κ

(
pi − ℓi

h

)
e(pi)

−1 pi ∈ A (6)

where κ denotes the 2D Gaussian smoothing kernel, h > 0
is the smoothing parameter (i.e. the bandwidth), and e(pi)
represents an edge-correction factor [10]. Note that herein the
temporal data is not considered for density estimation, as the
multi-UAV fleets are to be dimensioned for the period of the
time horizon, in this case based on a 5-day forecast. Recalling
Fig. 4 comparing variable spatial distribution and load levels,
the density estimation enables identifying zones with a higher
number of mission requests as described by the color schema.
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Fig. 4: Demand distribution comparison for a 5-day period: (a) and (b) homogeneous (uniform), with low and high
load, respectively; (c) and (d) nonhomogeneous, with low and high load, respectively;

Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]−1, as follows:

FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0
µte

−µttdt = 1− e−µtτ

[
FExp(τ ;µt)

]−1
= − ln(1−τ)

µt
= T (3)

with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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Fig. 3: Demand modeling with Poisson point process: (a) spatial uncertainty modeled with Poisson distribution repre-
sents the variability of the number of requests occurring per time interval in a specific area; (b) temporal uncertainty
concerns the variability in the time between requests, modeled with a continuous decaying exponential distribution.

Demand Density represented using 
Kernel Distribution Estimation (KDE)



Demand Modeling
Scenarios 
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By using distinct load levels, high and low workload scenarios can be modelled for both
homogeneous and nonhomogeneous processes.
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Clustering-based graph Partitioning
§ The problem of deploying UAVs to perform surveillance or monitoring tasks over
extensive areas with a high number of aerial services can become a very complex
resource allocation problem.

§ Due to the energy constraints of aerial platforms, many solutions are unfeasible. 

§ To handle this issue, a decentralized approach is proposed based on clustering 
methods, which divides the problem into multiple subgraphs, enabling solving 
simpler problems in parallel by limiting the size of the search space.
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Decentralized  Fuzzy Approach  Advantages 

reduced computational burden increased  fault-toleranceimproved  flexibility



Graph Model
To build decentralized networks of multi-UAV fleets the demand is represented
through graphs:
§ Global network model – supergraph
§ Decentralized network model – subgraphs

Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.

III. CLUSTERING-BASED GRAPH PARTITIONING

The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.

Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.

III. CLUSTERING-BASED GRAPH PARTITIONING

The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.
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§ Demand density, , at each location is estimated using Kernel Density Estimation.

Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.
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The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.

§ Based on the spatiotemporal demand models presented, the locations of aerial
service requests in LLA (Latitude, Longitude, Altitude) referential are converted to
cartesian space ( ) in the NED (North, East, Down) coordinate system.

Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.

III. CLUSTERING-BASED GRAPH PARTITIONING

The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.
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Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
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in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
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this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.
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number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
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into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.
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Demand-driven Clustering

Distance measures
§ Mahalanobis distance – adaptive squared inner norm for fuzzy clustering
§ Core distance – based on Eucledian distance to the n-th neighbor

Objective
Combine spatial and intensity measures to represent demand characteristics

Demand Density Estimates
§ Kernel Density Estimate (KDE) – translates the number of missions per area
§ Mutual Reachability Distance (MRD) – conveys the proximity of nearby missions
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Stage 3 design fleet configurations with available vehicle-types 

build configuration solutions if feasible then
compute clusterCost; 

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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(b) GK clustering and MST of mutual reachability graph

Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

evaluate globalCost; 

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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(b) GK clustering and MST of mutual reachability graph

Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

foreach do

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

Stage 2 extract inner-cluster density structure with MST 

compute mutual reachability graph and derive MST 

for

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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(b) GK clustering and MST of mutual reachability graph

Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

do

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

distance to the n-th neighbor;

build decentralized networks with GK fuzzy clustering 

compute fuzzy partition with C clusters and fuzziness m; 

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.
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increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.
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increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.
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increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.

, scenario parameter dictionary

Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.

III. CLUSTERING-BASED GRAPH PARTITIONING

The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model
The demand dataset is defined in the LLA (Latitude, Lon-

gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering
To derive fuzzy data partitions from a set of locations N ,

the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.

in NED coordinates and KDE density estimate
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Experiments were performed for a case-study
based on real locations from rural areas in the
central region of Portugal, where there is
typically increased fire hazard.

Special attention was given to the analysis of
a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high
workload)

§ Mutual Reachability Distance clearly
distinguishes areas with higher concentration
of services, which informs vehicle selection.

§ Fuzzy Gustafson-Kessel Clustering Algorithm
partitions the total workload into two fleets;



Heavy-Load Scenarios (non-homogeneous case)
Clusters C overlap m Aerial Vehicles, C 1 Cost C 1 Aerial Vehicles, C2 Cost C2 Global Cost

2
1.1 MR(1), FW(4) 37872 MR(1), FW(1) 11127 48999
1.2 MR(1), FW(3) 24554 MR(1), FW(1) 9747 34301
1.5 MR(1), FW(2) 22794 MR(1), FW(4) 38152 60946
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§ increasing redundancy enables a
more efficient system cost-wise

§ higher fault-tolerance implies a
significant cost increase in non-
homogeneous case for heavy-load
scenarios.



Results
Light-Load Scenarios (homogeneous case)

Clusters C overlap m Aerial Vehicles, C 1 Cost C 1 Aerial Vehicles, C2 Cost C2 Global Cost

2
1.1 MR(1), FW(2) 20959 MR(0), FW(2) 17432 38391
1.2 MR(1), FW(2) 20959 MR(0), FW(2) 17432 38391
1.5 MR(0), FW(2) 17306 MR(0), FW(3) 23809 41115
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not provide particular improvement
in light-load cases cost-wise;

§ can be beneficial if flexibility and
improved fault-tolerance is desired
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Results
Light-Load Scenarios (homogeneous case)
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Clusters C overlap m Aerial Vehicles, C 1 Cost C 1 Aerial Vehicles, C2 Cost C2 Global Cost
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1.1 MR(1), FW(4) 37872 MR(1), FW(1) 11127 48999
1.2 MR(1), FW(3) 24554 MR(1), FW(1) 9747 34301
1.5 MR(1), FW(2) 22794 MR(1), FW(4) 38152 60946
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Conclusion
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Future Work

Highlights

§ introduce dynamic intensity levels in demand modeling, and include time-windows and
priority levels for the tasks;

§ decentralized approach takes into account vehicle characteristics and energy
constraints;

§ using fuzzy boundaries as a design strategy enables the application of cooperative
resource allocation frameworks;

§ by dimensioning the problem using a demand-driven approach, the design and
deployment problems become simpler to address;

§ develop frameworks for cooperation between neighboring fleets.
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