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Abstract—Image-based fire detection is a safety-critical task,
which requires high-quality datasets to ensure performance guar-
antees in real scenarios. Automatic fire detection systems are in
ever-increasing demand, but the limited number and size of open
datasets, and lack of annotations, hinder model development.
Solving this issue requires that experts dedicate a significant time
to classify and segment fire events in image datasets. Towards
building large-scale curated datasets, this paper presents a data
annotation method that leverages semantic segmentation based
on superpixel aggregation and color features. The approach
introduces interpretable linguistic models that generate pixel-
wise fire segmentation and annotations, which are explainable
through simple fine-tunable rules that can support subsequent
annotation validation by fire domain experts. The performance of
the proposed algorithm is evaluated for relevant scenarios using a
publicly available dataset, namely through the assessment of the
segmentation quality and the labeling of fire color categories. The
outcomes of this approach pave the way for creating large-scale
datasets that can empower future deployments of learning-based
architectures in fire detection systems.

I. INTRODUCTION

The challenges in facing wildfires are increasing the demand

for automatic surveillance systems. However, current systems

are typically prone to false alarms in real deployments, thus

unreliable to response teams because even false positives

hinder the confidence in these solutions. Although several

research efforts have attempted to leverage the advances in

deep learning in classification and segmentation tasks, the

performance and evaluation are hampered by the quality of

existing image datasets. Limitations include, e.g., the low

number of samples and quality of image data, lack of rep-

resentativity of real-world situations, or being heavily based

on video frames, reducing variability. Moreover, datasets are

often missing annotations, limiting both the performance and

the information extracted for real operations.

To address this issue, this paper shifts focus from the usual

fire detection architectures, to instead target the development

of a pipeline for fire data annotation through semantic seg-

mentation. Towards creating large-scale high-quality annotated
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Figure 1: Overview of the fire data annotation pipeline: Color-based features
across the HSL and YCbCr color spaces are used to model semantic classes.

datasets, this paper presents a method to generate fine-grained

fire segmentations along with fire color labels, which can

subsequently be validated by fire domain experts to produce

reliable ground truth data. The proposed approach, depicted in

Fig. 1, leverages the feature rich representations of fire, namely

in the HSL and YCbCr color spaces, that allow an insightful

interpretation that informs the color-based superpixel segmen-

tation. Subsequently, interpretable rule-based linguistic models

are employed for pixel-wise classification, using statistical

color attributes to infer which superpixels correspond to fire

or not, and generate semantic labels descriptive of the colors

represented. Our approach is evaluated against the Corsican

Fire Database, demonstrating excellent results in fine-grained

segmentations. The proposed solution can cope with a wide

array of real-contexts: e.g., with fire at long distances, with

firefighters in the field of operations, and in smoke situations.

Where the performance might exhibit some limitations, the

interpretability and flexibility of this approach come into

play, allowing the expert to intuitively fine-tune the model

output to improve the segmentation, and thus guaranteeing

the expert confidence in the annotation process. This novel

approach extends the state-of-the-art on fine-grained fire se-

mantic segmentation for data annotation, which we believe is

an instrumental step towards building large-scale datasets for

safety-critical deployments.

978-1-6654-4407-1/21/$31.00 © 2021 IEEE



II. RELATED WORK

Image-based fire detection approaches have widely explored

color-based techniques [1], [2], and recent works have adopted

learning-based methods [3]–[5]. Herein, we concentrate on

image data from the visible spectrum because its widespread

availability allows a broader deployment. Contributions in this

domain targeting fire event detection generally design tech-

niques for either flame or smoke [6]. Most center on a single

application, e.g., ground operations, watchtower systems, or

aerial surveillance [7]. That means methods are considerably

different, use distinct types of data sources, thus making

these hard to compare generalization-wise. For learning-based

approaches, the scarce availability of curated datasets cur-

rently presents a significant roadblock for scaling up their

applications [5], [8]. Aiming for better generalization and

broader context applicability, this work pivots the attention to

approaches that enable building large-scale datasets, focusing

on flame detection.

Data annotation is paramount for improving algorithm per-

formance and embedding relevant information for this applica-

tion. However, the tendency in fire detection works has favored

computational efficiency [9], rather than segmentation granu-

larity [2], [10], hence being blindsided to its key role. In con-

trast, our objective is to prioritize fine-grained segmentation to

streamline the data annotation process. Although state-of-the-

art methods can support this goal, the task of defining ground

truths for fire data with meaningful information involves a high

level of complexity and nuance.

Describing colors of fire in the wild calls for expert knowl-

edge from fire domain specialists because it involves a deep

understanding of the natural and artificial fuels burning [11].

The role of this characterization has utmost importance both

in wildfire science and wildfire operations, e.g., as it relates to

fire intensity and severity. However, hand-crafted pixel-wise

annotation is extremely time consuming, therefore semantic

segmentation tools are crucial to simplify this procedure and

assist experts in developing ground truths.

Model interpretability. Being the experts involved in the

validation of algorithm outputs, the fine-tuning capacity and

interpretability of the models are essential to leveraging their

relevant inputs. For this reason, in this work, we privilege

interpretable ruled-based models that are fine-tunable if and

whenever needed. In this way, these systems provide higher

flexibility in an early stage than black-box models, which

could require extensive manual correction cycles until starting

generating high-quality outputs. That problem could discour-

age expert commitment in the data curation process, which is

avoided using our explainable and interpretable approach.

III. DATASET

The Corsican Fire Database (CFDB) is a public database

of wildfire images with several labels that allows the eval-

uation and comparison of algorithms related to wildfire de-

tection [12]. As of this writing, despite the authors intention

for an evolving dataset, where users can upload new data for

categorization, it remains composed of initial data, attesting

Figure 2: Side-by-side samples of fire images (colored) and respective ground
truths (binary) of the reduced Fire Image Dateset used, including firefighting
and wildland-urban interface elements, and varying visibility conditions, e.g.,
day, sunset, night and with smoke.

to the difficulty in developing these repositories. The database

comprises 500 images in the visible spectrum, 100 pairs of

visible and near-infrared images, and 5 multi-modal sequences

with visible and near-infrared pairs. We benchmark our ap-

proach using a part of this database.

The Fire Image Dataset. is a reduced dataset was used with

207 images from the 500 visible subset of the CFDB to create

a representative dataset with different scenarios (Fig. 2).

Samples were excluded due to low resolution, noise or

image artifacts, or pixelization that reduced the granularity of

fire features. From these 207 images, 50 were used to develop

and test the algorithm while the remaining were used only for

testing. Images without fire were not added since important

real-world contexts, e.g., sunsets, and presence of firefighting

means are already portrayed in this dataset.

IV. FIRE DATA ANNOTATION PIPELINE

Data annotation can be addressed using semantic segmenta-

tion methods. In this work, we pose this problem under a two-

stage approach: i) segmentation and ii) classification. The first

concerns the segmentation of image data that can be handled

with, e.g., partitioning algorithms. The second deals with

the classification of segmented regions through assignment to

categories according to their attributes. The objectives of the

proposed fire data annotation pipeline outlined in Fig. 3 are

twofold: i) pixel-wise segmentation of fire and ii) description

of the fire color category.

A. Problem Formulation

Consider a sample image, I , encoded in a preset color

space domain defined as D ∈ R
c, where c represents the

number of channels. Let X represent the space of image pixels

and x represent a pixel of the image, x ∈ X . To address

the first objective of performing a pixel-wise segmentation of

fire in an image, let F represent the set of pixels belonging

to the fire class, and N consist of the pixels that do not

depict fire. The ground truth defines the expert validated

data, where both classes are, in this case binary and mutually

exclusive, i.e. x ∈ F or x ∈ N . Regarding the second



Figure 3: Fire Data Annotation Pipeline. The proposed architecture is comprised of three core parts: i) Color Feature Engineering (Section IV-B), ii)

Color-based Superpixel Segmentation (Section IV-C), and iii) Interpretable Rule-base (Section IV-D). The first layer transforms the image data to the HSL and
YCbCr color spaces, better suited for fire instances. The second layer uses a purpose-built segmentation method that generates superpixels and merges them
into regions according to statistical color-based features. Then, the interpretable rule-base employs linguistic models to classify the merged regions, yielding
the pixel-wise segmentation of fire and the corresponding color labels for each region. Subsequently, the results can be reviewed by experts to validate and
fine-tune new ground truths for fire image data.

objective of describing the color of fire, we model four color

categories, namely red, orange, yellow and other. Note that,

unlike the first case, sets of pixels belonging to a color subset

{Cred, Corange, Cyellow, Cother} are harder to define in a crisp

way, thus are modeled with fuzzy sets.

The following sections detail the three layers of the pro-

posed architecture (Section IV-B - IV-D), and the implemen-

tation details are discussed in Section IV-E.

B. Color Feature Engineering

1) Seeing Fire Across Color Spaces.: As the objective is

to segment the flame based on color, choosing relevant color

spaces can be very helpful when defining parameters that

correspond to fire colors, thus, leading to better results. This is

a particularly important step for images with similar fire colors

in non-fire regions and when there is smoke over the flame,

decreasing the perception of the fire colors even for human

annotation. For these reasons, the color spaces used are the

HSL and the YCbCr. The HSL color space is easy to use and

works well in scenarios with a high contrast between the flame

and the background. The saturation and lightness channels

are more intuitive in defining fire colors and separating them

from dark smoke (high saturation) and clouds (low lightness).

Moreover, the hue channel makes it easier to specify the

range of colors for the linguistic terms (e.g., red, orange,

yellow). However, this color space is more challenging when
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(a) Original (b) Hue (c) Saturation (d) Lightness

Figure 4: Fire Features in HSL. Visual display of each HSL color channel
for two different images.

it comes to images with smoke in the scene or regions with

similar colors to fire colors (Fig. 4). In these situations, the

YCbCr color space allows for an easier flame segmentation

(Fig. 5) because of its ability to separate the colors, but it is

less interpretable than the HSL making its development more

complex. Color-based features derived from these datasets are

employed in the two stages of the proposed pipeline, namely

in the segmentation and classification parts.

C. Color-based Superpixel Segmentation

The use of superpixels allows to segment an image by

clustering pixels based on their color and proximity. This

technique can be very useful since superpixels can carry more

information than pixels [13], adhere better to the image bound-

aries and reduce the complexity of several image processing

operations [14], thus decreasing processing times.

1) Superpixel Algorithm.: The superpixels are generated

using the simple linear iterative clustering (SLIC) algo-

rithm [14] that allows the specification of both the desired

number of superpixels, Nsp, and their compactness, C. The

number of superpixels drives the granularity of the image

partitioning, being higher with the increase in Nsp. In turn, the

compactness controls the shape of each element, with higher

values creating more regularly shaped superpixels (square

like), and lower values creating more irregular shapes, which

adhere better to intricate image boundaries. Furthermore, the

16 55.4 94.8 134.2 173.6 213 30 50.4 70.8 91.2 111.6 132 120 141.8 163.6 185.4 207.2 229

23 56.6 90.2 123.8 157.4 191 72 86 100 114 128 142 108 124 140 156 172 188

(a) Original (b) Luminance (c) Chrom. Blue (d) Chrom. Red

Figure 5: Fire Features in YCbCr. Visual display of each YCbCr color
channel for two different images.



Figure 6: Zoomed area shows how similar superpixels 1, 16 and 27 merge, creating region 1. Merging results in a region-defined image.

superpixels are defined as vectors in R
3 in both HSL and

YCbCr color spaces, where each entry corresponds to the

mean color of each channel (H
sp
j , S

sp
j , L

sp
j or Y

sp
j , Cb

sp
j ,

Cr
sp
j ) of the superpixel sp, with j ∈ [1, Nsp].
2) Merging Superpixels.: We propose a procedure that

merges similar superpixels into regions. This method combines

neighboring superpixels that register a similar color shade.

This is performed using the YCbCr color features as these

allow the separation of fire from other instances like smoke.

Adjacent superpixels, j and i, are compared based on their

mean color (Y
sp
j,i , Cb

sp
j,i, Cr

sp
j,i) and merged if each entry

of the pairwise difference is lower or equal to a threshold

{0.034, 0.1, 0.03} , as follows:

| Y sp
j − Y

sp
i | ≤ 0.034 (1)

| Cb
sp
j − Cb

sp
i | ≤ 0.1 (2)

| Cr
sp
j − Cr

sp
i | ≤ 0.03 (3)

To exemplify this procedure, Fig. 6 illustrates the steps of

the process and the final result of merging the superpixels.

Such operation allows the number of regions to decrease

and, consequently, the processing time, and eliminate certain

superpixels that could be classified as fire colour.

D. Interpretable Rule-based Models

1) Color Perception: Humans describe colors using linguis-

tic terms like red, green or pink, but color perception might

differ from person to person [15]. Likewise, image retrieval

for search-based analyses is also based on key categorical

terms, namely color. Relevant fire characteristics are related to

their color so the annotation of these attributes is fundamental

towards creating large-scale datasets with relevant information

that can be used in a wide range of fire detection scenarios.

2) Linguistic Models Architecture: In this work, we pro-

pose interpretable linguistic models, designed for fire seg-

mentation and classification of the superpixel regions yielded

from the previous step. The rule-based architecture is build

with Mamdani-type fuzzy inference systems [16], that describe

the rules of the knowledge base with linguistic terms. This

architecture incorporates uncertainty and is able to bridge the

gap between semantic description of colors and its numer-

ical parametrization. The concept of the rules relies on the

association of the linguistic terms between both the mod-

eling of the color-based features and the categorization of

colors, with the underlying range of values. Our approach

leverages two complementary models, developed for the HSL

and YCbCr color spaces and outlined in Table I. Both models

are defined with three inputs, corresponding to the mean color

of each channel for every region. The two models output

a fire possibility per region, that is leveraged to perform

the classification of the merged superpixels and achieve the

pixel-wise segmentation of fire in the images. In addition,

the HSL model is able to describe fire color categories to

perform semantic segmentation of the colors in the image. The

proposed architecture may integrate both models in the data

annotation pipeline (Fig.3), combining the HSL and YCbCr

using a weighted average or maximum operators, to generate

a segmentation of fire. In parallel, the HSL model generates

fire color categories that can achieve the final semantic layers

that also describe the color of the fire.

The interpretable rule-base is built with simple and intuitive

triangular and trapezoidal parametric functions, that model

the corresponding linguistic terms for inputs and outputs as

follows. The HSL model uses terms describing levels of hue,

saturation and lightness to model the fire possibility, i.e. low or

high, and the fire color category, which classifies a region to a

corresponding color subset {Cred, Corange, Cyellow, Cother}. The

YCbCr model employs terms describing degrees of luminance,

chrominance blue and chrominance red. The knowledge-

base comprises fourteen rules. The outputs of the rules are

combined and transformed to a crisp value representing the

fire color possibility. The models generate continuous-valued

outputs that are converted to multi-class labels through the

application of rounding thresholds. For classification of a

region as being fire the decision threshold, δ, is usually applied

at 0.5. This value can be fine-tuned in the validation procedure

as will be discussed further along.

E. Implementation details

The proposed algorithm allows the flexible selection of three

parameters. For segmentation (Section IV-C), the number of

superpixels, Nsp, and the compactness, C, which are defined

within the algorithm. For classification (Section IV-D), a

threshold is applied to the outputs generated in the semantic



Table I: Interpretable Linguistic Models. Description of the ruled-based systems designed for fire data annotation, using the HSL and YCbCr color-features.
The classification models have three inputs and one common output. Each input/output is defined with different linguistic terms and parameters, forming
membership functions. There are triangular (3 parameters) and trapezoidal (4 parameters) membership functions. The HSL model has one additional output,
fire color, to generate fire color category.

Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Output parameters

HSL

Hue

Saturation

Lightness

red1, orange, yellow,

other, red2

low, high

low, medium, high

[0, 0, 0.03, 0.055]; [0.04, 0.09, 0.133]; [0.11, 0.16, 0.2];

[0.17, 0.25, 0.87, 0.96]; [0.9, 0.97, 1, 1];

[0, 0, 0.4, 0.65]; [0.545, 0.75, 1, 1];

[0, 0, 0.23, 0.39]; [0.23, 0.427, 0.85, 0.96]; [0.94, 0.965, 1, 1];

fire possibility

fire color

low, high

red, orange,

yellow, other

[0, 0, 0.3, 0.5]; [0.4, 0.7, 1, 1];

[0.5, 1, 1.75]; [1.25, 2, 2.75];

[2.25, 3, 3.75]; [3.25, 4, 4.5];

YCbCr

Luminance

Chrominance Blue

Chrominance Red

low, medium,

medium high, high

low, medium, high

low, medium, high

[0, 0, 0.365, 0.49]; [0.457, 0.5, 0.548, 0.594];

[0.548, 0.63, 0.72, 0.776]; [0.73, 0.8, 1, 1];

[0, 0, 0.435, 0.56]; [0.47, 0.527, 0.58, 0.6]; [0.446, 0.69, 1, 1];

[0, 0, 0.49, 0.625]; [0.58, 0.647, 0.69, 0.78]; [0.71, 0.826, 1, 1];

fire possibility
low, medium,

medium high, high

[0, 0, 0.23, 0.33]; [0.27, 0.35, 0.53, 0.65];

[0.6, 0.65, 0.75, 0.8]; [0.75, 0.83, 1, 1];

classification of fire and the multi-class color categories. These

parameters are established in the algorithm but can be easily

fine-tuned by experts upon validation.

1) Parameter selection: Concerning the segmentation part,

the selected number of superpixels must ensure that the algo-

rithm can achieve a fine-grained segmentation. The number of

superpixels drives the quality of the segmentation in this re-

gard. Since, by nature, flame shapes are very irregular and the

image data might contain regions of interest that are captured

at long distances, if Nsp is too small the image partitioning

results in larger superpixels that do not adhere exclusively to

the flames. This behavior is illustrated in Fig. 7, where in the

lower left corner of the samples presented we can distinctly

observe that the superpixels can capture the flames but also

aggregate other information nearby. This would inherently

degrade the quality of the segmentation, but more importantly,

it could prevent an accurate semantic segmentation because a

misleading mean color value of the superpixel could result in

its misclassification. However, selecting higher values of Nsp

results in a larger number of increasingly small superpixels,

as depicted in Fig. 7, which are harder to classify using the

mean color statistics as these capture less context information.

The value established by default in our algorithm is 1000 as

it is considered an adequate trade-off between these factors.

Regarding the compactness, since it controls the shape of the

superpixels, it is particularly relevant when segmenting irreg-

ular shapes like fire. The influence of varying this parameter

can be observed notably in Fig. 7, by comparing the samples

on the upper right corner of left and right side images. The

effect of enforcing a higher compactness (depicted on the right

side) could result in less fine-grained semantic segmentation

for both fire and fire colors. For this reason, the value of C

was established as 1, because it is the lowest value possible,

making superpixels adhere better to irregular boundaries.

Considering the proposed pipeline integrates two ruled-

based models, there are two possible values for the classifica-

tion of the input in terms of the possibility of corresponding to

a color similar to fire colors. The ensemble classifier uses as

decision function the weighted average or maximum operators,

being possible to define the weights and the strategy to apply.

Figure 7: Visual comparison between different Nsp and C. The Nsp in the
lower left corner of each image is 100 and 2000 in the upper right corner.
Images on the left have a C equal to 1 and images on the right to 20.

The proposed solution is intended to be fine-tunable, so while

a threshold on fire classification is set typically at 0.5, it can be

adjusted if required. Our experiments use a δ = 0.5 threshold

for the fire segmentation, except when specified otherwise.

V. EXPERIMENTS

A. Performance Evaluation

The Fire Image Dataset (Section III) is a subset of the

Corsican Fire Database (CFDB), which provides pixel-level

segmentations annotated by a single expert as reported in [12].

While the definition of the regions corresponding to fire are

complex to define and encompass a great degree of uncertainty,

herein we consider this unique source our ground truth.



1) Baseline: To evaluate the proposed architecture we

assess several baseline approaches. The first and simpler ones

are based on the HSL model and the YCbCr model separately.

We test the integrated approach, with the combination of

the two models with a Weighted average ensemble classifier,

considering several weight distributions. Subsequently, we also

present results for the multi-model approach with an ensemble

classification based on the Max Value operator.

2) Performance Measures: To evaluate the performance of

the segmentation algorithms, we will use a set of different

metrics that enable the comparison with the ground truth data.

For model assessment we will focus on three metrics namely:

Accuracy, Intersection over Union (IoU), and Dice coefficient.

The metrics consider: true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). The words true

and false refer to whether the positives and negatives were

correctly classified. For the fire data annotation purpose we are

interested in obtaining segmentations with rich information.

Considering the outputs will be subsequently validated by ex-

perts, the oversegmentation while not ideal is not concerning,

since these can be easily corrected through fine-tuning or by

specifying which regions of superpixels were misclassified and

annotating the true label. In the following, we evaluate cases

of interest showcasing the capabilities of the proposed method,

along with the identification of the most challenging scenarios

that are likely to require expert annotation.

B. Results Evaluation

To demonstrate the capabilities of the proposed algorithm,

a set of representative examples was selected for analysis.

The examples depicted in Fig. 8, showcase the performance

of the internal steps of the semantic segmentation for three

distinct scenarios. The figure represents the pipeline by the first

presenting the original of each image, followed by the merged

superpixel segmentation. This step already was designed to

target the separation from fire from the surrounding context

so it already gives a close and granular partitioning of the

image, capturing the fire instances even when these are at

long distances and covered by smoke. Next, the ruled-based

models generate the classification of the superpixels according

to fire possibility, with higher values (brighter in the image),

representing the superpixels that will be classified with the fire

label. The HSL linguistic model also classifies the fire colors

in the image, which relates to fire intensity and severity. By

comparison with the original image, it can be observed the

superpixel approach combined with the fire color classification

is able to identify all possible colors in the first two sample

images, and correctly attributes the other color label to the

remainder of the scene. By intersecting both the fire clas-

sification with the color classification, we can automatically

generate fire data annotations that closely approximate the

expert annotated data, but with richer information concerning

the color characteristics.

Regarding limitations of the color-based approach, as ex-

pected scene objects resembling fire colors are more likely to

be captured by the propose segmentation. However, such cases

as depicted in Fig. 9, like the sunset and firefighting elements

are normally likely to require expert annotation, or need to

be complemented by other algorithms for detection of other

objects in the scene.

C. Understanding the Architecture

While most parameters in the architecture are generically

preset, the proposed architecture is interpretable and can be

fine-tuned according to the more complex scenarios. For in-

stance, for the image represented in Fig. 4 obscured by smoke,

the fine-tuning of the classification threshold can improve the

final semantic segmentation as is illustrated in Fig. 10.

The design process described throughout this paper was

evaluated with the incremental assembly of its building blocks.

Table II presents the ablation study with the overall results for

each model, including variants of the pipeline proposed for

semantic segmentation of fire. As represented in bold, the best

results were achieved for the multi-model approach using the

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(a) Original Image (b) Merged (c) Fire Possibility (d) Fire Color (e) Output (f) Ground truth

Figure 8: Examples for each step in real-world scenarios



Table II: Ablation Study.

Model δ Accuracy IoU Dice

HSL HSL model 0.5 93.39 62.49 73.92

YCbCr YCbCr model 0.5 91.58 56.68 69.82

Weighted

0.4 HSL + 0.6 YCbCr

0.3 HSL + 0.7 YCbCr

0.2 HSL + 0.8 YCbCr

0.5

0.5

0.5

93.16

93.01

92.81

61.52

61.00

60.13

73.66

73.29

72.63

Max Value max(HSL,YCbCr)
0.5

0.4

93.47

94.04

66.51

73.53

77.59

82.63

(a) Original (b) Output (c) Ground Truth

Figure 9: Examples of limitations in real-world scenes.

(a) Threshold, δ = 0.5 (b) Threshold, δ = 0.4

Figure 10: Fine-tuning of fire classification threshold for improving the
semantic segmentation.

maximum value operator and by lowering the classification

threshold to 0.4.

VI. CONCLUSION

This paper introduces a novel pipeline for fire data annota-

tion that enables semantic segmentation of fire and the pixel-

wise annotation of relevant color characteristics. The architec-

ture proposed leverages a purpose-built algorithm that com-

bines color-based superpixel segmentation with interpretable

rule-based models that allow generating pixel-wise semantic

labels of fire and of fire colors in the images. We demonstrate

that the proposed approach is able to obtain fine-grained

semantic segmentations and discuss the limitation in chal-

lenging real-world scenarios. Our solution has key advantages

due to its fine-tuning ability and interpretable nature, which

enables the close involvement of fire domain experts in the

validation of new ground truth data for a broad array of fire

detection applications. Our approach to fire data annotation

aims to streamline this procedure, towards the creation of high-

quality large-scale datasets that can allow robust deployments

in safety-critical real-world scenarios. Future work will en-

compass development of automated methods for generating the

desired color palettes to ensure a close-set segmentation task,

as well as evolving the color modeling approach, namely using

fuzzy clustering-based and fuzzy granular modeling methods.
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