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Resumo

A presente dissertação detalha o modelo de um veı́culo aéreo não tripulado tail-sitter, e os de-

safios de projetar o seu controlador de voo. Sendo uma classe particular de aeronaves de asa fixa,

os tail-sitters são capazes de realizar tanto voo aerodinâmico como manobras estacionárias, desco-

lagem e aterragem vertical, bem como as transições entre as duas condições de operação. Neste

trabalho, primeiramente, é apresentado o veı́culo tail-sitter escolhido para controlo e é detalhado o

modelo matemático não-linear que descreve a dinâmica da aeronave, que é então implementado num

simulador realista. Segundo, o modelo não-linear é linearizado e analisado para que possam ser uti-

lizados métodos de controlo linear. Como as dinâmicas lateral e longitudinal da aeronave podem ser

desacopladas, neste trabalho considera-se apenas o modelo longitudinal como objetivo de controlo.

Utilizando técnicas de controlo clássico, nomeadamente controladores proporcional-integral-derivativo

e reguladores lineares quadráticos, a estabilização em torno dos modelos linearizados, o seguimento

da trajectória durante as transições e também as manobras de descolagem e aterragem autónomas são

possı́veis através de uma lógica de controlo supervisório. Este controlador supervisor é responsável

por selecionar o modo de operação do controlador dependendo da fase de voo real e da manobra dese-

jada. Por fim, todo o controlador é testado através da simulação de duas missões diferentes: a primeira

realiza apenas manobras de voo vertical, e a segunda inclui voo vertical e aerodinâmico. Os resultados

das simulações são apresentados e o controlador avaliado.

Palavras-chave: Tail-sitter, Modelo Não-linear, Controlo Linear, Regulador Quadrático Lin-

ear, Transições Automáticas, Descolagem e Aterragem Vertical
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Abstract

The present dissertation details a tail-sitter unmanned aerial vehicle model and the challenges of

designing its flight controller. As a particular type of fixed-wing aircraft, tail-sitters are able to perform

both aerodynamic flight and stationary maneuvers, vertical take-off and landing, as well as transitions

between the two operating conditions. In this work, first, the tail-sitter vehicle chosen for control is pre-

sented, the mathematical nonlinear model describing the aircraft dynamics is detailed and a real-time

simulator is implemented. Secondly, the nonlinear model is linearised and analysed so that linear con-

trol methods can be used. Since the aircraft’s lateral and longitudinal dynamics can be decoupled, only

the longitudinal model is considered for control purposes. Using classical control techniques, namely

proportional–integral–derivative and linear quadratic regulator controllers, the stabilization about the lin-

earized operating points, the trajectory tracking during transitions and also the autonomous take-off and

landing maneuvers are possible by means of a supervisory control logic. This supervisory controller

is responsible for selecting the controller operating mode depending on the actual flight stage and de-

sired maneuver. Finally, the whole controller is tested by simulating two different missions: the first one

performing only vertical flight maneuvers, and the second one including both vertical and aerodynamic

flight. The simulations’ results are presented and the controller is evaluated.

Keywords: Tail-sitter, Nonlinear Model, Linear Control, Linear Quadratic Regulator, Autonomous

Transitions, Vertical Take-Off and Landing
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Chapter 1

Introduction

This chapter briefly explains the motivation behind the work proposed for this work and gives an

overview of the importance of Unmanned Aerial Vehicles (UAVs) flight and application regarding the Eye

in the sky Project. The goals and contributions of this work are also presented, along with a description

of the content covered in each of the subsequent chapters.

1.1 Motivation

The relevance of this dissertation stems from the Eye in the Sky project. This project involves the

design and development of an aerial platform that will support wildfire operations [1].

The system aims to improve the situational perception and monitoring of the fire perimeter through

the provision of geo-referenced images of high spatial resolution in real time and the improvement of

emergency communications networks by transporting communications repeaters.

In order to collect and transmit images and to relay communications in support of wildfire manage-

ment, the equipment needs to be risen and placed in altitude over the area of interest. The possibility of

using unmanned aerial means to carry this equipment is clear and widely recognised. However, there

are several limitations pointed to its use. The first is the possible interference with other aerial firefighting

assets operating within the same altitude range. Another issue is the low autonomy of these devices,

typically less than 30 minutes.

In the Eye in the Sky project, the solution considered is the development of a platform consisting of

a High Altitude Balloon (HAB) and an UAV [1], as explained in Figure 1.1. The HAB will be responsible

for ascending in altitude all the equipment, including the UAV. Then, when the platform starts moving

away from the region of interest, the UAV is released. The UAV carries the payloads and is responsible

for the guided descent and controlled release of probes in a predetermined location. For the described

operation, the use of a flying wing with Vertical Take-Off and Landing (VTOL) is suggested since it does

not require a landing runway and because of its landing precision capabilities.

One of the major benefits of the proposed platform is that, by being transported by the HAB, the

operational capacity of the UAV increases due to the potential energy accumulated at high altitude. It
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Figure 1.1: Representation of the HAB + UAV solution for wildfire operations, from [1]

will allow long-range flights with little or no power usage, converting altitude into ground cover. Another

advantage is the ability to deploy the system in a short period of time, so that communication and aerial

image transmission are immediately guaranteed.

This solution besides covering hundreds of kilometres at different heights with a considerable speed,

will allow the acquisition of data otherwise unobtainable in a cost-effective manner. Similarly, to sup-

port wildfire operations, various monitoring applications can benefit from this complete platform and, in

particular, from UAVs.

1.2 Topic Overview

UAVs are a class of aircraft that can fly without a human pilot onboard. These vehicles can be

remotely controlled from the ground, which require reliable wireless communication, or controlled by

autonomous flight controllers onboard. In both cases, aircraft systems require some sensor payload,

such as cameras, Inertial Measurement Units (IMUs), LiDAR, and GPS to collect and transmit data in

real time [2].

As referred in the previous section, UAVs have several applications, both in military and civilian

fields, such as search and rescue, surveillance, precision agriculture, infrastructure inspection, wireless

communications, package delivery, aerial photography, 3D mapping, among others [3]. As a result of

the many different ways in which these systems can be used, the demand for this group of aircraft

has increased in recent years. Numerous designs have been developed with different specifications for

their size, weight, range, endurance, engine type, and configuration in order to meet the requirements
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imposed by such applications. In addition to the different designs, several control techniques have been

studied to improve both the stability of the UAV and the flight maneuvering. Besides, there are other

concerns in a higher level of control that can be solved with the support of optimisation techniques, for

instance, avoiding obstacles and potential collisions, the search for the shortest path, the savings in

battery life, path planning, or flight formations.

One of the main obstacles UAVs currently face, due to their small dimensions and light weight, is

maintaining control at high altitudes and in windy conditions. However, before beginning to study control

methods, it is essential to select an appropriate type of UAV for the mission of interest.

In respect to their shape and configuration, UAVs are usually classified into two categories: fixed-wing

aircraft, which have better performance in flight efficiency and long endurance missions; and rotor-craft,

which are preferred for their precise maneuvering and hover capability. In order to combine these two

capabilities, recent developments have been done in a third category: the fixed-wing VTOL aircraft,

sometimes mentioned as hybrid aircraft [4], able to perform both hovering and efficient aerodynamic

flight.

In this manner, there are several ways to perform VTOL manoeuvre, including tilting-rotor, quadplane,

thrust-vectoring, tail-sitting, and others [5]. For the purpose of this dissertation, a flying wing tail-sitter

is chosen as a case study of the modeling and control challenges associated with this unconventional

configuration.

1.2.1 Tail-sitter

This platform, by definition, takes off and lands on its tail, which means, in a nose-up orientation. After

taking off in this orientation, the entire system can tilt (pitches down about 90◦) and shifts from hover to

aerodynamic flight mode. Since a tail-sitter uses the same rotors for both hover and aerodynamic flight,

no additional ones are required. For landing, the vehicle has to return to vertical flight, by pitching up

about the same 90◦, and then flying down again in the nose-up orientation until it reaches the ground.

An illustration of the described movement is shown in Figure 1.2.

Figure 1.2: A tail-sitter take-off and landing transitions to and from level flight mode
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Historically, one of the earliest tail-sitter VTOL aircraft design was the ”Convair XFY-1”, developed by

the US Army in the 1950’s, shown in Figure 1.3. This project was cancelled soon after its first flights

due to the difficulty of the control and the pilot’s limited view during landing. The main control problem

was related to the transition from vertical to horizontal flight [6]. This maneuver requires strong pitching

moments that could not always be created with the limited control authority of the aircraft ailerons. In

an effort to solve these difficulties, there were some models created involving more complex systems,

such as more rotors or more actuators. Beyond the increasing weight and complexity of the equipment

involved, these newer designs were preferred as they could favour the pilot’s work.

Nevertheless, because aerial robots do not have these pilot’s view problems, several tail-sitter VTOL

aerial robots have been researched and developed in recent years [7]. The main difficulty in their design

has been achieving robust transitions between hover and leveled flights, and so the first tail-sitter UAV

models designed were over-engineered when compared with some newer options. Naturally, with the

increasing sensor precision as well as control strategies, more optimized tail-sitting prototypes started

to be developed.

In their simplest form, one of the advantages of tail-sitters is that, unlike the tilting-rotor, quadplane

and thrust-vectoring, they do not need extra actuators to perform the vertical manoeuvres. The main

requirements of a tail-sitter are a high thrust-to-drag ratio (greater than 1, as compared to 0.3 for con-

ventional aircraft) and large control surfaces with large deflections, which allows them to achieve vertical

and hover flight and the desired high levels of aerobatic maneuverability. These platforms can have one

or more propellers, always pointing in the longitudinal direction on the body frame. Since its propellers

cannot tilt, the system has fewer mechanisms and actuators. The minor number of components reduces

the probability of failures and increases the system’s reliability.

When comparing tail-sitters with tilt-rotors aircraft, which is one of the most similar configuration

solutions for the exposed requirements, some more advantages can be indicated. Tilt-rotors maintain

the same body orientation in both vertical and aerodynamic flight, and therefore, these aircraft undergo

high drag forces especially during take off and landing. With large drag forces, the aircraft will have

to apply much more thrust in these flight stages than tail-sitters which reduces the aircraft efficiency.

During vertical flight and hovering, tail-sitters are also considered to have greater maneuverability. In

this orientation their control surfaces should have more control authority than tilt-rotors since larger

forces and moments can be created by elevon deflections downstream the propellers.

1.2.2 Tail-sitter Control Challenges

A control system can be simply defined as a system which controls other systems response in order

to achieve a desired state. Among all the existing control types, they can be generally categorized in

two groups: linear control systems and nonlinear control systems. As the designation suggest, a linear

control system is based on models governed by linear differential equations and a nonlinear control

system is based on models often governed by nonlinear differential equations.

The simplicity of linear models structure gives them a great amount of advantages as they can be

analyzed using very powerful known mathematical tools and they are less demanding during computer
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(a) Horizontal Flight (b) Vertical Flight

Figure 1.3: Convair XFY-1 aircraft [8].

simulations. The problem is that, because most real-world systems are highly nonlinear, linear models

are never exact, and therefore of low interest for the controllers development. However, in cases where

mainly solutions near a stable operating point are of interest, nonlinear systems can often be linearized

by approximating them by a linear system. In this way, linear control techniques can be used in nonlinear

systems.

The challenge of controlling a tail-sitter, in comparison with conventional aircraft, arises from the

very different aircraft dynamics between hover and leveled flights. Such differences may require distinct

controllers for each operating mode. To overcome this difficulty, several successful control strategies

for unmanned tail-sitters have been reported and tested. A plausible solution suggests a supervisory

control switching logic choosing between hover and level flight linear controllers. The problem in this

control structure is the add of a discrete behaviour to the continuous UAV model when the controller

switches during operating mode transitions. This creates a new layer of complexity which must be dealt

appropriately. The use of the same control structure but different gains for different flight modes is a very

well known technique used in the aeronautic industry, which is commonly referred as gain scheduling.

In [9], the use of a PID (Proportional-Integral-Derivative) controller is explored for each flight mode. A

PID is a control loop mechanism employing feedback and it is built by analysing a specific transfer func-

tion. These developed controllers are based on transfer functions that describe approximately the main

aerodynamic behavior of the longitudinal and lateral modes. In this work, the transfer functions where

identified analysing data from an experienced pilot executed excitation maneuvers from trim conditions.

Continuing in linear control, in [10], [11] and [12] optimal control techniques, namely LQR (Lin-

ear–Quadratic Regulator), were successful implemented during both flight conditions and transitions,

in a conventional configuration aircraft, in a flying wing and in a tail-sitter, respectively. The theory of

optimal control is concerned with operating a dynamic system at minimum cost. Therefore, the LQR

algorithm is essentially an automated way of finding an appropriate state-feedback controller which re-

duces the amount of work done by the control systems engineer to optimize the controller.

More complex linear control techniques are also experimented by the research community. Con-

trollers based on adaptive control [13] or hybrid control [14] are tested on tail-sitters.
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In [15], a nonlinear control technique was used. In this case, a backstepping controller applied on

an adaptive dynamics model estimated by an on board recursive least squares was able to control the

aircraft during flight tests.

In [16], a single quaternions based controller, with a cascaded architecture, is developed for the

very same tail-sitter propose for this work, the X-VERT VTOL Horizon Hobby, and is proven through

experimental flight tests to be able to perform the transitions needed.

1.3 Platform Presentation

Figure 1.4: E-flite X-Vert VTOL Horizon Hobby [17]

Having an overall perspective about the tail-sitter UAV configuration, it is time to select an appropriate

platform to model and control. Aligned with the motivational project where this work is inserted, some

requirements for the required system are set:

• The system should be able to communicate with a GCS (Ground Control Station) in order to share

flight state information and onboard sensors data in real-time, tune parameters while a vehicle is

in flight, and other useful functionalities.

• The system should perform autonomous flight and execute pre-planned flight missions, such as

taking off, hovering in a steady position and then landing, in a first instance. In further project

phases, the goal should be to perform more complex pre-planned flight missions or even to follow

references generated in real time, including position, altitude and velocity.

• The system should also enable manual control of the aircraft, as a matter of redundancy and

necessity for initial flight setup.

Since the focus of this work is not to design an aircraft itself, working with a readily available UAV will

streamline the process. Therefore, the proposed platform was the E-flite X-Vert VTOL tail-sitter, made

by Horizon Hobby, shown in Figure 1.4.

Its geometry can be described as a tailless blended wing-body aircraft (flying wing) with a span of

approximately 0.5 m. As a result, instead of having ailerons on its wings and elevators on its tail, it

has a single control surface on the trailing edge on each side, known as elevons. The X-Vert has two

propellers, aligned with the control surfaces, and fixed in a forward direction in the body frame.
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Being a commercial tail-sitter vehicle, the X-Vert can be bought ready to fly together with a Spektrum

Transmitter. With a custom hardware and attitude controller, this platform is capable of performing stable

hover and level flight as well as performing transitions between these two flight modes. On its packaging

and attached manual, it states that, with its proprietary controllers, the X-Vert is able to fly horizontally in

“moderately windy”, but hover and flying vertically should only be attempted in “very light or no wind”.

The receiver, sensors (IMU and barometer), ESCs (Electronic Speed Controllers), and controller are

all assembled in an unique board. However, as the source code of this flight controller is not available,

this entire board will need to be replaced by new components. Analysing some possible controller boards

and verifying available compatible sensors, the X-Vert platform can fulfill all the stated requirements.

1.4 Objectives

The purpose of the present dissertation resides over the development of a flight controller for the

X-Vert tail-sitter and its validation in a simulated software environment. Hence, the main objectives are:

1. To understand and report the detailed nonlinear model of the tail-sitter platform provided in Matlab

and implement it in a real-time simulator suitable for control design and testing purposes.

2. To focus on the longitudinal stability analysis of the nonlinear model by making use of linearization

and linear control theory analysis.

3. To design a longitudinal flight controller based on linear control techniques, namely classic and

optimal control techniques for stabilization and reference tracking.

4. To demonstrate through simulations the autonomous ability of the controller to perform stable hover

and level flights, as well as transition between this two types of flights, and also to perform au-

tonomous take-off and landing.

5. To simulate two minimum flight missions which would include all the critical phases and verify the

smooth operation of the designed controller. The first mission should include only vertical flight,

and the second mission should include transitions and aerodynamic flight. These missions would

also serve as starting points for future real environment flight experiences.

1.5 Thesis Outline

After this introductory chapter, the dissertation outline is divided into four parts. First, the platform

nonlinear mathematical model and the simulator implementation are detailed in Chapter 2. In Chapter

3, the trimming and linearization methods used are described along with the longitudinal model charac-

terization within the flight envelope. In Chapter 4, the LQR control theory and variations implemented

are briefly explained, as well as the final control strategy and architecture implemented to meet the pro-

posed objectives. In Chapter 5, the simulation flight results are presented and analysed. Finally, the

dissertation conclusions are presented in Chapter 6 along with recommendations for future works.
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Chapter 2

Nonlinear Model

The current chapter describes a nonlinear model of a tail-sitter Micro-Air-Vehicle (MAV). This model

was provided by Professor José Raul Azinheira for simulation purposes, which was in turn adapted from

a experimentally validated model presented in [16]. Beside of the model described in the present work

has been provided without experimental validation as would be desirable, because it was adapted from

a validated model, it is expected to represent the behavior of the X-Vert vehicle in an acceptable way

and therefore it was used for control purposes. The simulator is implemented in Matlab/Simulink.

The description of the nonlinear model is divided into five main sections. The first section describes

the essential frames and conventions for the model development. In the second one, the equations of

motion of a rigid aircraft are presented. The third section details how the airspeed and other essential

aerodynamic variables in formulating the equations of motion for a MAV are defined. The fourth section

presents the mathematical expressions of the forces and moments acting on the body. Lastly, the

implemented aircraft simulator is presented.

Throughout this chapter, the following notation is used in the aircraft model equations:

• scalar values are symbolized by uppercase and lowercase letters;

• vectors are symbolized by boldface lowercase letters;

• matrices are symbolized by boldface uppercase letters;

• coordinate frames are symbolized by blackboard-bold letters.

2.1 Frames and Conventions

2.1.1 Reference Frames

To derive and understand the aircraft dynamic behaviour, this section presents the various coordinate

systems used to characterize the position and orientation of the aircraft, the relation between these

coordinate systems as defined in [18], and some conventions and nomenclature for the aircraft model

development. The reference frames of interest are:

• The inertial frame FI = [xI , yI , zI ]
T : is fixed on the surface of the Earth and is chosen as NED

coordinates (North-East-Down). The ground is assumed to be locally flat and non-rotating for the

8



Figure 2.1: Coordinate frames, geometric dimensions and the four actuators [16]

current application, considering the distance and duration of the flight.

• The geometric frame FG = [xG, yG, zG]
T : is fixed on the trailing edge of the flying wing, laterally

centered and inside the chord line. The geometric frame G is used for geometric references

independent of the center of mass location.

• The body frame FB = [xB , yB , zB ]
T : is fixed on the aircraft and located at its center of gravity

CG. The center of mass is assumed to be laterally centered, inside the chord line and located

at a distance dx from the trailing edge. The xB is chosen so that it is pointing forward with the

longitudinal reference line, the yB is aligned with the right wing of the UAV and the zB is placed

pointing down, completing the right-handed set.

• The wind frame FW = [xW , yW , zW ]T : fixed on the same origin as the body axes, but differs in

orientation. Instead of associated with aircraft physical assembly, the wind axes system is aligned

to correspond to its motion. The xW points into the incoming air stream, the zW points down and

lies in the plane symmetry and the yW is chosen perpendicular to the other two axes.

The need to distinguish the inertial and body frames arise since, as it is shown in the next sections,

the Newton’s equations of motion are derived relative to a fixed inertial frame while forces and moments

that act on the aircraft body are easily represented in the body frame.

2.1.2 Attitude Representation

The transformation between the body frame FB and the inertial frame FI is obtained by rotating them

certain angles about their three axes. These angles are commonly referred to as Euler angles, namely

Roll (ϕ), Pitch (θ) and Yaw (ψ). This representation is preferably used because it provides intuitive

means for characterizing the orientation of a body in three dimensions. The transformation from the

inertial frame FI to the body frame FB , represented by the rotation matrix RB
I is:

RB
I = RZYX = RX(ϕ)RY (θ)RZ(ψ) (2.1)

This matrix is composed by a sequence of three rotations which can be ordered in several different

ways. Since their order will influence the resulting matrix, the rotation sequence ’ZYX’ is used as it is the
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most common choice in aircraft applications [18].

Thus, the transpose of RB
I gives the transformation from the body frame FB to the inertial frame FI

and is represented by R as follows:

R = RI
B =


cθcψ (−cϕsψ + sϕsθcψ) (sϕsψ + cϕsθcψ)

cθsψ (cϕcψ + sϕsθsψ) (−sϕcψ + cϕsθsψ)

−sθ sϕcθ cϕcθ

 (2.2)

in which sϕ and cϕ represent the sine, sin(ϕ), and cosine, cos(ϕ), operators, respectively. During the

computational implementation it is used the Matlab function eul2rotm.

Although the physical interpretation of Euler angles is clear and used widespread, it is also known

that they have a mathematical singularity, commonly referred to as gimbal lock. For the Euler angle

sequence chosen, when the pitch angle approaches θ = ± π/2, there is a singularity, which means that

the yaw and roll angle are not unique and computational instabilities may happen. One possible solution

to this problem could go through switch between sets of Euler angles during flight. However, considering

the wide flight envelope of the aircraft under study (compared to conventional aircraft) there is no Euler

set that will be suitable for all expected orientations. Instead, the quaternion q attitude representation

is used whenever possible despite of its lack of intuitive appeal. Quaternion attitude definition, relations

and properties are given in Appendix B.

Similarly to the rotation matrix defined in (2.2) with Euler angles, the transformation from the body

frame FB to the inertial frame FI from a quaternion representation is given by:

R = RI
B =


q20 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q20 − q21 + q22 − q23 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q20 − q21 − q22 + q23

 (2.3)

During the computational implementation, the Matlab function quat2rotm is used to compute the

desired rotation matrix.

2.2 Actuators

Actuators are controllable surfaces or components that modify the forces and moments acting to the

body. The aircraft in study contains four unconventional actuators, namely:

• The left thruster: which is driven by the left thruster signal τl (−) that goes between 0 and 1.

The left thruster creates a force Tl in the longitudinal direction and a torque Ql about the propeller

axis of rotation, both applied to the aircraft. This torque is opposite to the direction of the propeller

rotation.

• The right thruster: which is driven by the right thruster signal τr (−) that also goes between 0

and 1. The right thruster creates a longitudinal force Tr and a torque Qr about the propeller axis

of rotation. To cancel the left thruster torque, the right propeller rotates counterclockwise.
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• The left elevon: which is a control surface located at the trailing edge of the vehicle, intention-

ally located behind the left thruster, in the slipstream, to ensure it maintains effectiveness at low

speeds. Its deflection is represented by δl (rad) and its maximum deflection is 39◦ for each side.

• The right elevon: which is similarly located behind the right thruster and its deflection is rep-

resented by δr (rad). By convention, a control surface deflection increases the camber, so both

elevon deflections follows are defined by the right hand rule along the yB axis, i.e. a positive

deflection means the elevon deflects down.

The elevons defection divert the airflow over them (originated from forward velocity or induced airflow

created by the propellers) and generate a force. Since this force is not applied at the CG, a positive

deflection will cause a negative moment.

Because most of the equations that describe the aerodynamic forces and moments in books are

expressed in terms of standard actuators configuration, it is useful to relate the listed actuators to the

conventional control surfaces (elevator δE , aileron δA and rudder δR) in addition to thrust signal δT . So

in this aircraft configuration, driving the elevons differentially has the same effect as ailerons, producing a

torque about xB axis, while driving elevons together has the same effect as an elevator, causing a torque

about yB axis. On the other hand, the rudder-like effect can be produced by differential thrusts. The

longitudinal absolute force results from the combination of both thrusters. These relations are expressed

in the following equations:

δE =
δr + δl

2
δA =

δr − δl
2

δR =
τr − τr

2
δT =

τr + τl
2

(2.4)

When in nose up attitude, the tail-sitter is able to perform hover in a fixed position, climb and descend

in a vertical line or even perform low speed displacements in the horizontal plane. The movement in

the zB axis direction is achieved by lightly pitching about the yB axis, produced by the elevons equal

deflection. The movement in the yB axis direction is achieved by a gentle tilt about the zB axis which

can be produced by differential thrusts. The heading, in this situation, can be controlled by differential

elevon deflections producing a moment in the xB axis.

All the terms detailed in this section are shown in Figure 2.1.

2.3 Aircraft Equations of Motion

To describe the aircraft behaviour, thirteen state variables will be introduced. These are:

• Three velocity states v = [u, v, w]T : translation velocity of the aircraft CG in the body frame FB ,

also called body velocity. Expressed in [m/s].

• Three angular velocity states ω = [p, q, r]T : rotational velocity of the aircraft in the body frame

FB , also called body rates. Expressed in [rad/s].

• Three position states p = [pN , pE , pD]
T : the NED position of the CG defined relative to the

inertial frame FI . Expressed in [m]. Altitude will be denoted as h = −pD.
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• Four angular position states q = [q0, q1, q2, q3]
T : attitude of the aircraft defined in terms of

quaternions. This representation does not have unit, and so it is symbolized by [-].

The rigid body equations for the kinematic relationships of the aircraft as well as its dynamics can be

found in any aircraft textbook such as [18].

Kinematics

Besides, the aircraft velocity is commonly expressed in the body frame FB , the aircraft position is

usually measured and expressed in the inertial frame FI . Consequently, two relate these two variable

the rotational transformation is required.

ṗ = R(q) vB (2.5)

The quaternion attitude relation with the body rates is more complex and is represented by the Ω

matrix, shown in (2.7).

q̇ =
1

2
Ω q (2.6)

Ω =


0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0

 (2.7)

During implementation, when propagating (2.6) the quaternion unitary is loosed. In order to maintain

this property a second term is added to the previous equation ([18]):

q̇ =
1

2
Ω q + λ q where, λ = 1− ∥q∥2 (2.8)

Dynamics

The aircraft dynamic equations (2.9) are derived from Newton’s Second Law to rigid bodies and result

into the following equations that express the relationship between the forces FB and moments MB

acting on the aircraft and the resulting accelerations. These equations are then integrated to generate

the aircraft states p, q, vB, ωB.

v̇B =
1

m
FB − ωB × vB

ω̇B = I−1 (MB − ωB × I ωB)

(2.9)

where m is the mass of the aircraft, × is the 3D cross product, and I is the inertia matrix of the aircraft

about the body frame FB axes centered at the CG. The null elements in this matrix assume a symmetry

that does not exist in the real model and that the CG is perfectly located over the xB axis. These

assumptions should be seen as an approximation.

I =


Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz

 (2.10)
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The values of the aircraft parameters m and I are presented in Table A.1.

2.4 Aerodynamic Variables

During 2.1.1 some reference frames of interest, such as the wind frame, were defined. The utility of

the wind frame FW is that it simplifies the calculation of aerodynamic forces since stability derivatives

are measured in this axis system. The air velocity va = [ua, va, wa]
T is the velocity of the aircraft relative

to the surrounding air. When in no wind conditions, the air velocity va and the velocity relative to the

body reference frame vB are the same. When in wind condition, to guarantee an appropriate modelling,

a careful distinction between these velocities must be taken into account. The wind velocity vw is the

wind velocity relative to the inertial frame FI , represented in the body frame FB . The relation between

these three vector velocities is:

va = vB − vw (2.11)

Figure 2.2: Airspeed Va, angle of attack α and angle of side slip β

Besides of the vector representation, the air velocity can also be expressed in terms of the airspeed

Va, the angle of attack α and the angle of side slip β, which is easier to directly use in aerodynamic

forces and moments equations. To better visualise this, the listed variables are drawn in Figure 2.2 and

are defined as followed:

Va =
√
u2a + v2a + w2

a

α = atan2(wa, ua)

β = asin(va, Va)

(2.12)

In the aerodynamics model and thrusters model, instead of using the air velocity of CG, the velocity

at different points on the aircraft can be evaluated by accounting for its position in relation to the CG and

the angular velocities. That said, the air velocity at any point i, located at a position ri on the aircraft,

can be found from the following equation:

va,i = va + ωB × ri (2.13)

At each point of interest, 2.12 can also be applied.
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2.5 Tail-sitter Model

In 2.3, FB = [Fx, Fy, Fz]
T and MB = [L, M, N ]T were referred as the total force and moment

acting at the CG, as shown in Equations 2.14. In this model, five types of forces were considered to be

involved:

• The gravitational force Fg represents the aircraft weight which, by definition, is applied at the CG,

and so it does not produce torque.

• The thrust Fth and the torque Mth which result from the left and right operating propellers.

• The aerodynamic forces Fa and moments Ma which are obtained through the aerodynamics

effects on the wing body and elevons.

• The rod aerodynamic forces Fr and moments Mr which are purely resistive and originate from

structural segments.

• The ground contact forces Fc and moments Mc which represent the vehicle interacting with the

ground.

FB = Fg + Ft + Fa + Fr + Fc

MB = Mt + Ma + Mr + Mc

(2.14)

All the geometric values, thruster parameters and aerodynamic coefficients used to describe the

X-Vert model along this chapter are given in Appendix A.

2.5.1 Gravity

The gravity’s effect on the aircraft is modeled as a force proportional to the mass m and the gravi-

tational acceleration g applied at the CG. In inertial frame FI this force always act on zI axis direction,

so it can be easily transformed into body frame FB , only by applying the transposed of rotation matrix

defined in (2.3).

F g = RT (q)


0

0

mg

 (2.15)

The CG location is assumed to be in the vertical plane of symmetry of the aircraft and in the same

horizontal plane as the thrusters axes of rotation and the cord line of the wings. The distance from the

trailing edge is denoted as dx and is given in Table A.1.

2.5.2 Thrusters

The purpose of this section is to adequately formulate a model that describes the propulsion system

of the tail-sitter, which has to result in the thrusters total force Ft and torque Mt generated from the

throttle signals τl and τr.

To define the thrusters force, only the longitudinal forces component are considered. This means

that, even when the free stream flow is not normal to the propellers disk plane, the appearing non-
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longitudinal forces will be neglected since they are much smaller than the aerodynamic forces acting on

the aircraft body. Therefore, the left and right thrusters forces Tl and Tr will be considered normal to the

propellers disk and positive aligned with the xB axis direction. So, the total thrust is:

F t =


Tl + Tr

0

0

 (2.16)

The thrusters are placed at a distance l = yp,G along the yB axis from the CG of the aircraft but in the

same horizontal plane. That said, even though they do not produce moments in the yB direction, when

the thrust forces are not the same, they generate a yawing moment about the zB axis. Additionally, each

propeller also generates a torque Ql and Qr. Besides rotating in opposite directions when these torques

are not equal, they also generate a rolling moment about the xB axis. Both contributions are expressed

in the first term of the following equation:

M t =


Qr −Ql

0

l (Tl − Tr)

+ Ith (Ωl − Ωr)


0

−r

q

 (2.17)

The second term from the previous equation derives from the gyroscopic moments. The aircraft has

to overcome the propellers’ resisting torques and also the ones from the motors moving parts. Although

these effects result in a small contribution, they are not negligible. In (2.17), Ith is the rotational inertia

of the spinning parts of both thrusters, about xB axis. Ωl and Ωr are the left and right thruster angular

velocities and are both positive.

As this tail-sitter is equipped with two thrusters, left and right, each of the thruster unit consists of

a propeller coupled with a brushless DC (Direct Current) electric motor, in turn driven by an Electronic

Speed Controller (ESC). During the next sections it is described how Tl, Tr, Ql and Qr are obtained from

input signals τl and τr. First, there are the equations that describe how the ESC and the electric motor

induce the rotation Ωp in the propeller from the throttle signal τ and the battery voltage Vbatt. Second,

the equations that describe the propeller are represented relating the angular velocity Ωp of the propeller

and the inflow velocity uin to generate a thrust force T and a torque Q.

ESC and Electric Motor

The speed of the motor-propeller is controlled by the ESC. The ESC is connected to the battery with

an available voltage Vbatt and varies the voltage provided to the motor Vm. Although ESCs as electronic

systems have their own dynamics, these dynamics are fast and can be neglected. Thus, they will be

described only as a proportion to the controller’s commanded Pulse-Width-Modulation (PWM) signal τ ,

normalized between zero and one.

Vm = Vbatt τ (2.18)

Since the ESC is run by a small LiPo battery whose power drains quickly, the actual voltage applied
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to the electric motor will drop over time even for a constant signal command. However, in the present

work, this will not be taken into account. A possible model of the battery could be found in [19].

About the electric motor, a simple model for a DC (Direct Current) motor from [20] is implemented.

It is derived from the Kirchhoff’s current law and Newton’s second law applied to the electrical and

mechanical system, respectively. This results in a second order model, including the motor current I

and the torque generated by the propeller Q, which is represented by the following equation to obtain

the motor angular velocity Ω:

İ =
1

Lm
(Vm −RmI −KeΩ)

Ω̇ =
1

Jm
(KtI −Q−BmΩ)

(2.19)

where Jm is the inertial moment, Lm is the inductance, Rm is the motor resistance, Bm is the damping

constant, Ke is the back-electromotive force, and Kt is the torque constant. Note that the inclusion of the

torque Q on the motor model, which will be explained in Section 2.5.2, effectively represents an internal

feedback.

Propeller

In this section, a model of the propeller aerodynamics is presented based in Momentum Theory and

Bernoulli’s Equation, adapted from [21] and [22].

First, the inflow velocity uin, drawn in Figure 2.3 is the longitudinal component of the velocity com-

puted from the (2.11) taken at the propeller location rprop from (A.3). Note that the left propeller should

have negative y coordinate from the CG.

Figure 2.3: Inflow velocity and angular speed on the left propeller, adapted from [22].

Knowing the propeller angular speed Ω and the inflow velocity uin, it is possible to calculate the

advance ratio J , in [1/rev], as follows:

J =
π uin
Ω rp

(2.20)

where, rp is the radius of the propeller.

Then, according to the UIUC data site [23], for the E-flite 130x75mm propeller the values of the thrust

and torque coefficients CT and CP can be numerically obtained from Figures 2.4 as a function of the
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advance ratio J .

CT = CT (J), CQ = CP (J) (2.21)

Actually, the coefficients also depend on the Reynolds Number. However, because the variation be-

tween each of the Reynolds lines is relatively small, the mean line between the maximum and minimum

value for each advance ratio J is used.

(a) Thrust coefficient (b) Power coefficient

Figure 2.4: Thrust and torque coefficients as a function of the advance ratio J, from [23].

Finally, thrust force T and torque Q for any given angular speed Ω can be obtained from:

T =
4

π2
ρ Ω2 r4p CT , Q =

4

π3
ρ Ω2 r5p CP (2.22)

The last equations, where both Tl, Tr, Ql and Qr are computed as magnitudes, are then taken part

in (2.17) that accounts for the direction of these quantities.

Before proceeding to the wing aerodynamics, further insight about the airflow behind the propeller

must be provided, since it will be used in the next section for modelling the slipstream effects on the

elevons.

Slipstream

From Momentum Theory [21] and [22], as it is deduced below, one can reasonably predict the velocity

downstream of the propeller disk.

Once the propeller is moving, the incoming air stream normal to the propeller Vin is accelerated and

a thrust force T is generated in the opposite direction. Its value is given by:

T = ρ A Vprop︸ ︷︷ ︸
ṁ

( Vwake − Vin︸ ︷︷ ︸
2 wind

) (2.23)

where A = π r2p is the disk area, ṁ is the mass rate flow through the propeller, Vprop and Vwake rep-

resent the air velocity immediately below the propeller and the air velocity in the fully developed wake
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Figure 2.5: Slipstream variables

respectively, as illustrated in Figure 2.5. From this theory, Vprop is the average of Vin and Vwake, and

the difference between Vprop and Vin is called the induced velocity wind. The airflow is assumed to

be fully developed when the wake velocity reaches two times the induced velocity wind, which occurs

approximately at a distance of two propeller’s radii downstream of the propeller disk.

Figure 2.6: Induced velocity on a propeller, adapted from [21].

Keeping in mind that the induced airflow covers some of the control surfaces, it becomes important

to calculate wind. From Figure 2.6, the resulting velocity at the disk propeller Vprop can be obtained from

the sum of the undisturbed airspeed Vin and the induced velocity wind as:

Vprop =
√
(Vin cos φ+ wind)2 + (Vin sin φ)2 (2.24)

where φ = acos(uin, Vin) represents the angle between Vin and the axis of rotation of the propeller.

Combining (2.23) and (2.24) leads to the following fourth order equation in wind:

w4
ind + 2 cos(φ) Vin w

3
ind + V 2

in w
2
ind =

(
T

2 ρ A

)2

(2.25)

Once the thrusts T have been calculated for both propellers, the absolute value of the induced
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velocity wind in each one can be determined solving (2.25). Due to its high non-linearity, the equation is

solved numerically.

In this same theory [21] and [22], assuming mass conservation and incompressible flow, as the air

behind the propeller continues to accelerate, the area of the accelerated flow contracts. Thus, the radius

of the wake at this point can be obtained from:

rwake =

√
r2p

(
Vin + wind
Vin + 2 wind

)
(2.26)

If fully developed wake is assumed, it can also be approximated to a simple relation with the propeller

radius:

rwake =
√
2 rp (2.27)

Thus, the area of the elevon affected by the propeller’s wake is given by:

Swake = 2 rwake︸ ︷︷ ︸
dwake

ce (2.28)

where dwake is the wake diameter and ce is the elevon chord.

The velocity vector in the fully developed wake vwake = [uwake, vwake, wwake]
T can be determined

by:

vwake = vin +


2 wind

0

0

 (2.29)

As defined in Section 2.4, the Equations 2.12 can also be employed for the wake vector vwake to

determine the specific angle of attack αwake and side slip angle βwake which will be useful to define wing

aerodynamics. These angles are obtained from:

Vwake =
√
u2wake + v2wake + w2

wake

αwake = atan2(wwake, uwake)

βwake = asin(vwake, Vwake)

(2.30)

Finally, the lateral position of the middle of the wake over the elevon is obtained from:

ymid wake = yp,G − (xp,G − xe,G) tan(βwake) (2.31)

where xp,G, yp,G and xe,G are the propeller and elevon coordinates given in the geometric frame FG.

Once more, note that, since the angular velocities at each propeller may differ, the resulting values

from this wake model will not be necessarily equal for both sides, and should therefore be determined

separately.
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2.5.3 Wing Aerodynamics

Aerodynamic forces, as the name suggests, are the forces exerted on a body by the air passing

around it. They are the result of the relative motion between these two elements and so, they can be

interpreted acting in the wind frame FW and will depend on the true airspeed Va, angle of attack α, and

side slip angle β of the entire platform, i.e. evaluated for the CG. The rotation from the wind frame FW
to the body frame FB can be done by applying the following rotation matrix:

Ra = RB
W =


cαcβ −cαsβ −sα
sβ cβ 0

sαcβ −sαsβ cα

 (2.32)

in which sϕ and cϕ represent the sine (sinϕ) and cosine (cosϕ) operators, respectively. During the

computational implementation the Matlab function eul2rotm is used.

Wing Segments

To calculate the aerodynamic forces and moments, the wing is decomposed into four segments, as

demonstrated in Figure 2.7. The segments 1 and 2 represent the area of the half wing and elevon that

is not affected by the fully developed wake on each side, left and right, respectively; and the segments

3 and 4 represent the area of the elevon under the propeller wake, also for the left and right side. This

separation is important to ensure the effectiveness of the control surfaces mainly during hover flight.

Figure 2.7: Wing Segments

The four segments are described by the position coordinates of their aerodynamic center ri,G =

[xi,G, yi,G, zi,G], given in the geometric frame FG, and surface Si. The longitudinal position xi,G is known

as located approximately at a quarter-chord from the leading-edge of the profile. In the case of the

half wing segments, the mean aerodynamic chord c̄ is used and, in the case of under wake segments,

the elevon chord ce is used. On the other hand, the lateral position of the first segments is given

approximately by the lateral coordinate of the trapeze center y trapeze, from (A.6) and the lateral position

of the under wake segments is estimated by the (2.31), for left and right side. See Figure 2.8.
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Figure 2.8: Aerodynamic center location and area of wing segments

Each element has its own air velocity Va,i, angle of attack αi, and side slip βi. The first two are

evaluated using Equations 2.12 and 2.13, and the other two using Equations 2.29 and 2.30 derived

in the slipstream model for the respective position in the body frame ri = ri,G − rCG. δi represents

the control surface deflection on the specific segment. The Table 2.1 summarizes all the segments’

parameters mentioned above.

Table 2.1: Segments Parameters

Element Si c̄i xi,G yi,G zi,G Va,i αi βi δi

1 S/2− Swake,l c̄ 3/4 c̄ −y trapeze 0 Va,l αl βl δl

2 S/2− Swake,r c̄ 3/4 c̄ y trapeze 0 Va,r αr βr δr

3 Swake,l ce 3/4 ce −ymidwake l 0 Vwake,l αwake,l βwake,l δl

4 Swake,r ce 3/4 ce ymidwake,r 0 Vwake,r αwake,r βwake,r δr

Segment Forces and Moments

In an airfoil, as illustrated in Figure 2.9, the longitudinal aerodynamic force can be decomposed into

two causes: the shear force in the flow direction due to the viscosity of the air, also known as drag D;

and the normal force due to the pressure difference on its surface, known as lift L, both acting through a

point called center of pressure. However, because the position of this point changes over the chord line,

when the angle of attack varies, its analysis is chosen to be done at a geometrically fixed point, called

the Aerodynamic Center AC (which is not the same as the CG). The translation of the lift and drag forces

into this point produces a pitching moment m in the yB axis.

Therefore, each segment i, evaluated using Va,i on its surface Si, creates its own lift force Li, drag

force Di, and pitching moment mi about its aerodynamic center, from the following equations:

Li =
1

2
ρ V 2

a,i Si CL(αi, δi)

Di =
1

2
ρ V 2

a,i Si CD(αi, δi)

mi =
1

2
ρ V 2

a,i Si c̄i Cm(αi, δi)

(2.33)
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Figure 2.9: Longitudinal aerodynamics forces and moments, adapted from [18].

where lift coefficient CL, drag coefficient CD, and pitching moment coefficient Cm are functions of the

local angle of attack αi and elevon deflection δi, which are described later.

Since the aerodynamic center of the segments is not the same as the center of gravity CG of the

aircraft, the segment’s aerodynamic forces and moments have to be translated to this point. Although

the lift force Li, the drag force Di, and the pitching moment mi all belong to the longitudinal motion,

because they may differ from the left and right side, lateral moments such as rolling moment li and

yawing moment ni will be generated. Their values can be determined by the following equations:

Yi = 0

li = −Li yi

ni = Di yi

(2.34)

Full Envelope Longitudinal Aerodynamics

As referred before, the angle of attack α is the variable that has the most significant impact on the

generated aerodynamic forces and moments. A tail-sitter, by definition, is an aircraft configuration that

ends up operating in a full envelope of α. However, its relation with the aerodynamic coefficient is not

constant through its full range and must be modeled using separated ranges. In [16], [24], and [19],

the lift coefficient is separated into two main parts: the linear range for low angles of attack and the

nonlinear range when the angle of attack increases and the airflow starts separating from the airfoil

surfaces causing a loss of lift, also known as ”stall”. Although the airfoils of the tail-sitter are not flat, this

linear model is developed based on a theoretical flat plate profile and the high angle of attack model is

retrieved from an empirical database listing it for different flat plate aspect ratios. Naturally, the control

surface deflections also modify the aerodynamic forces and moments. Their effect can be represented

as an increase in the airfoil camber and a reduction in its effective chord length.

Therefore, in this work, for the CL(α, δ), CD(α, δ), and Cm(α, δ), high ordered nonlinear functions

which approximate very closely the full envelope shown in [16] are used. These functions are presented

in Figures 2.10 and 2.11.
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Figure 2.10: Angle of attack influence on lift coefficient (in black) and on drag coefficient (in red). Both
coefficients are represented with elevons at minimal, zero and maximal deflection denoted as shown in
the legend. Adapted from [16].

Figure 2.11: Angle of attack influence on pitching moment coefficient. All coefficients are represented
with elevons at minimal, zero and maximal deflection denoted as shown in the legend. Adapted from
[16].

Full Wing Aerodynamics

Until here, only longitudinal forces due to the angle of attack effect were evaluated, so the lateral

side force Yi in each segment is assumed to be zero. However, to calculate the resultant forces and

moments, along with the sum of all segments’ contributions, more terms can be added with respect to

other variables.

F a = Ra

(∑
F i + Fw

)
Ma =

∑
M i +Mw

(2.35)

where F i = [−Di, Yi,−Li] and M i = [li,mi, ni]. The terms Fw and Mw represent the effect of the

relevant state variables evaluated with respect to the full wing, as follows:

Fw =
1

2
ρ V 2

a S


CDw

CYw

CLw


and Mw =

1

2
ρ V 2

a S c̄


Clw

Cmw

Cnw


(2.36)
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where Va is the airspeed at CG, S is the wing area, and c̄ is the aerodynamics mean chord. The

variables considered in longitudinal aerodynamics are the derivative of the angle of attack α̇ and the

pitch rate q, and in lateral aerodynamics they are the side slip angle β, the roll rate p and yaw rate r.

To keep the model simple and because these variables have a minor effect in the overall forces and

moments compared to the angle of attack α, the aerodynamic coefficients are considered constant and

thus the wing coefficients are considered to change linearly with the variation of each state variable,

see Equations 2.37. Therefore, their values, shown in Table A.6, were taken [11] corresponding to a

flying wing model. As they were not measured for this tail-sitter platform, they can be assumed as

approximations to add realism to the aerodynamic model.

CDw
= 0

CYw
= CYβ

β +
bw
2Va

(
CYp

p+ CYr
r
)

CLw
=

cw
2Va

(CLα̇
α̇+ CLq

q)

Clw = Clββ +
bw
2Va

(
Clpp+ Clrr

)
Cmw

=
cw
2Va

(
Cmα̇

α̇+ Cmq
q
)

Cnw
= Cnβ

β +
bw
2Va

(
Cnp

p+ Cnr
r
)

(2.37)

2.5.4 Structural Segments Aerodynamics

In modeling an aircraft, in addition to the induced drag (the side effect of the production of lift by

the wing), another important parcel of drag forces must be taken into account. When an object moves

through the air, regardless of whether it is capable of generating lift, a parasitic drag is generated, which

depends on its form, skin friction, and fluid properties. Thus, according to [25], the absolute value of the

drag force produced can be modeled by:

Dj =
1

2
ρ V 2

a,j Sj CDj
(Rej) (2.38)

Each structural segment j has a surface Sj , a local air velocity vector va,j evaluated through (2.13)

and a specific drag coefficient CDj
which is function of the Reynolds number Rej .

CD,j = 1 + 10Re−2.3
j and Rej =

ρ Va,j dj
µ

(2.39)

where µ = 1.81 × 10−5 [kg/(ms)] is the dynamic viscosity of air at 15 ◦C, and dj is the characteristic

linear dimension of the structure segment. Reminder that the air density and dynamic viscosity can be

assumed to be constant since their variations in the altitude range conditions is negligible.

Thereby, the structural parts are divided into six individual segments, each with its CG located at

rj = rj,G − rCG. The first two, modeled as circular rods, represent each of the propellers’ guards.

Their length lj is equal to the perimeter of a circumference with radius rpg. The other four segments

represent the right and left landing gear structures, modeled as two straight rods on each side. The
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(a) Propeller Guard (b) Landing Gear

Figure 2.12: Rod segments in a wind field Va,j producing a drag force Dj , adapted from [16]
.

surface of each segment is defined by Sj = dj lj . All rod segments’ parameters are described in Table

2.2.

Table 2.2: Rod Segments’ Parameters

Element dj lj xi,G yi,G zi,G

1 0.003 2πrpg xp,G yp,G zp,G

2 0.003 2πrpg xp,G −yp,G zp,G

3 0.007 0.063 −0.011 −0.252 0.063

4 0.007 0.063 −0.011 −0.252 −0.063

5 0.007 0.063 −0.011 0.252 0.063

6 0.007 0.063 −0.011 0.252 −0.063

Having the same orientation but opposite direction of the local air velocity, the absolute value Dj is

then multiplied by the local air velocity unit vector in the body frame FB to represent all rod segment

forces in the same coordinate frame orientation. Finally, these forces are translated to the center of

gravity and summed as expressed in the following equations:

Fr =
∑

Djuj , Mr =
∑

rj ×Djuj (2.40)

2.5.5 Ground Contact Dynamics

To simulate a full flight mission, the ground contact dynamics during take off and landing must also

be taken into account. To model the contact forces, a spring-damper analogy is used in four strategic

selected exterior points to detect the contact with the ground. Since in a tail-sitter configuration the

takeoff and landing maneuvers are performed in the vertical position, pointing upwards, the selected

points are located in the lower and outer parts of the lateral structures as shown in Figure 2.13.

Considering the inertial frame FI and using the spring-damper analogy, the spring term acts on the

vertical zI axis proportional to the displacement dk of the point k penetrating the ground. On the other

25



Figure 2.13: Ground Contact Forces and the four selected point in red. Adapted from [16].

hand, the damper term is proportional to the point’s inertial velocity vI,k and can act on the three axis

directions depending on its velocity vector direction. These three values are calculated as follows:

dk = −zI,k

rI,k = R(q) rk + p

vI,k = R(q)(vB + ωB × rI,k)

(2.41)

where rk = rk,G − rCG and p = [pN , pE , pD]
T is the three state position of the CG in the inertial

frame FI . The location of the points in the geometric frame FG is presented in Table A.7.

Consequently, the contact force FI,k produced at each respective point location is modeled as:

F I,k =


0

0

−m kp dk


−m kv vI,k (2.42)

In this model, kp = 400 s−2 and kv = 3.6 s−2 are used as the spring and damper constants, re-

spectively, which provide a realistic stopping time when the aircraft reaches the ground. Note that, as a

ground contact force, it should only appear when dk is lower than zero.

Finally, these inertial forces are then translated into the body frame FB and summed to generate the

total contact force Fc and contact moment Mc:

F c =
∑

R(q)TF I,k, M c =
∑

rk ×R(q)TFI,k (2.43)

2.6 Aircraft Simulator

The objective of this entire chapter was to develop and implement a nonlinear model that would

approximately describe the aircraft dynamics. These dynamics depend on the actual state variables and
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are influenced by the system’s actuators, and can also be perturbed by some unpredicted disturbances

such as wind conditions.

The actual state can be represented by a full state vector X of 13 variables:

X = [u, v, w, p, q, r, pN , pE , pD, q0, q1, q2, q3]
T (2.44)

The actuators are represented by the input vector U of 4 variables:

U = [δl, δr, τl, τr]
T (2.45)

The wind effects are represented by the disturbances vector D of the 3 input variables, in the in the

inertial frame FI :

D = [wN , wE , wD]
T (2.46)

To easily read the state variables, the quaternion attitude was first converted to Euler angles and the

output of the implemented model is represented by the output vector Y of 12 variables:

Y = [u, v, w, p, q, r, pN , pE , pD, ϕ, θ, ψ]
T (2.47)

That said, the dynamic equations that describe the system can be described as follows:

Ẋ = f(X, U , D) (2.48)

To close the dynamic system loop, the recursive information about the states variables X is given by

the integration of the state derivatives Ẋ resulting from the dynamic system equation (2.48).

Finally, after the aircraft model implementation, to better comprehend how the platform is behaving

and moving, a 3-D graphic simulator in Simulink was created. See Figure 2.14.

Figure 2.14: Aircraft Simulator
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Chapter 3

Longitudinal Model Characterization

In 2, the tail-sitter simulator was presented based on a nonlinear model capable of performing both

longitudinal and lateral maneuvers. The purpose of the present chapter is to understand and charac-

terize its dynamics. In the study of dynamical systems, linearization is a powerful tool and is used as

a method for assessing the local stability of an equilibrium point of a nonlinear differential equations

system. However, before determining the type of analysis and flight limits of interest, the two minimum

flight missions proposed for this work as control objectives should be explained and defined:

• First, an exclusively vertical flight mission, where the controller must guarantee stabilization

during take-off (vertical climb), hover (maintaining vertical orientation with zero climb velocity),

move forward and backward (without making use of aerodynamic flight), and finally landing (vertical

descent until the aircraft touches the ground). See Figure 3.1.

Figure 3.1: Minimum Vertical Flight Mission

• Second, a minimum horizontal flight mission, which, in addition to the required maneuvers for

the first mission, must be able to transition from hover to horizontal flight, perform stable horizontal

flight, and then transition back to hover. See Figure 3.2.

That said, this chapter is divided into four sections. During the first section, the flight envelope is

defined for the simulation, i.e. the limits where the aircraft is capable of finding equilibrium points. Then,

in the second section, the implementation of the trimming function to determine the equilibrium points is

explained. In the third section, the linearization method is presented. Finally, during the fourth section,

the linear systems are analyzed and used to characterize the aircraft dynamics which is the starting

28



Figure 3.2: Minimum Horizontal Flight Mission

point for the development of the stabilization controller.

Note that, from now on, the conventional representation of the actuators U = [δE , δA, δR, δT ]
T is

chosen over the direct representation because its more intuitive way helps the understanding of the

behaviour and comparison with conventional aircraft analysis.

3.1 Flight Envelope

To control a flight system it is really important to be aware of and understand the limits of its operation.

Usually, a flight envelope graphically refers to the capabilities of the aircraft in terms of airspeed and

load factor or airspeed and atmospheric density. On the one hand, the load factor awareness helps to

keep the aircraft in its structural safety margins during maneuvers. On the other hand, the atmospheric

density control is important to set the maximum altitude where the aircraft is able to generate enough lift

to preform a level controlled flight. However, because in this work study no large altitude variations nor

structurally aggressive maneuvers are intended, only the airspeed limits will be defined according to the

two main flight orientations: vertical and horizontal.

Vertical Flight

For the vertical flight, i.e. nose pointing up, there are three different movements that can be per-

formed. First, the aircraft can stay still in the air, also known as hover. Second, the aircraft can move in

the vertical axis, both climbing and descending. And lastly, the aircraft can move forward and backwards,

by slightly pitching over the yB axis.

For each flight condition, the maximum and minimum velocity could be approximately deduced by

understanding the aircraft dynamic limits. The Figure 3.3 illustrates the forces applied on the aircraft and

helps explaining the cause of each limit.

• About the hover, since its definition implies zero velocity, there is no limit to be set. However, if a

wind model is introduce in future works, the maximum wind velocity to perform a safe hover (which

will differ depending on the wind direction) should be calculated.

• The maximum climb velocity Vmax is limited by the propeller maximum thrust. Subtracting the
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aircraft weight the the maximum thrust, the maximum drag that the platform can overcome is

obtained. Then, inverting the drag formula and having the aircraft total drag coefficient, the ap-

proximated maximum velocity could be found.

Dmax = Tmax −mg → Dmax =
1

2
ρS CD V

2
max → Vmax (3.1)

• The maximum descent velocity Vmin could be limited by the minimum slipstream velocity Vwake,
min

over the elevons to guarantee their authority and the aircraft stabilization and control. Vwake,
min

, con-

sidering fully developed wake and that the aircraft is descending, can be calculated as two times

the induced velocity for the produced thrust force minus the absolute value of the aircraft velocity

vector. In this case, the thrust is the minimum value that summed with the drag at this descent

velocity equals the aircraft weight. To calculate this, a numerical convergent function should be

implemented. Based on [16], the value of Vwake,
min

= 10 m/s could be assumed. Additionally, from

Momentum Theory [21], it is known that the instability of the aircraft increases with the increase

of the descent velocity due to turbulence around the rotor and the aircraft body. Therefore, even if

the elevons authority is guaranteed, and reasonable limit should be imposed.

Vmin → T = mg −D(Vmin) → Vwake,
min

= 2wind(T )− Vmin (3.2)

• The maximum forward velocity Vmax is limited by the maximum angle of inclination allowed

from the nose up position (θ = π/2). Since the aerodynamic drag force is too big is during this

movement, to maintain the altitude, the maximum forward velocity would be to slow. Therefore,

in order to achieve a reasonable forward velocity the thrust must be increased and the aircraft

will likely start climbing. The approximated maximum deviation achieved during simulation without

destabilization was about 25◦. From the forces equilibrium, a numerical convergent function could

be implement to estimate the maximum forward velocity.mg = T sen(α) + L

Tcos(α) = D

(3.3)

where T, L, and D are functions of Vmax and α.

• The maximum backwards velocity Vmin is limited by the same assumptions that the maximum

forward velocity. Therefore, since the wing aerodynamics are based on a flat plate module, the

wing dynamics do not depend on the way that the aircraft is moving in the longitudinal plane, and

the absolute value of the forward and backwards velocity is the same.

Figure 3.3: Vertical Flight Forces Diagrams
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Horizontal Flight

For the horizontal flight, i.e. level aerodynamic flight where the force that counteracts the aircraft

weight should rely mainly on the wing lift, there are only two velocity limits to be calculated: the maximum

level velocity and the minimum level velocity. The Figure 3.4 illustrates the forces applied on the aircraft

and helps understanding the cause of each limit.

• The maximum level velocity Vmax, similarly to the maximum climb velocity, this is limited by the

propeller maximum thrust. In this case, the weight is counterbalanced by the lift force, and the

maximum thrust should equal the total drag at the maximum velocity. Since both drag and thrust

depend on the velocity, a numerical function could be implemented to find this value.

Vmax → L =
1

2
ρ S CL V

2
max = mg → CL(α) → α

Dmax (Vmax, α ) = Tmax (Vmax, α ) (3.4)

• The minimum level velocity Vmin is limited by the stall velocity at the maximum elevon deflection.

However, because the stall angle of attack is quite high, the thrust force has a vertical part which

will also contribute to counter acts the aircraft weight. Therefore, the calculus to find this speed

limit are not so linear and, again, a numerical function could be implemented.mg = T sen(α) + L

Tcos(α) = D

(3.5)

where T, L, and D are functions of Vmin and α.

Figure 3.4: Horizontal Flight Forces Diagrams

Flight Envelope Results

Since these theoretical limits would only be raw approximations and would likely diverge from the

real limits, instead of using theoretical limits, the trimming algorithm (explained in the next section) is

expected to reveal by itself where the aircraft can or cannot find feasible equilibrium points. Therefore,

for both vertical and horizontal limit approximation, a large range of velocity values were tried to trim and

then validated in the aircraft simulator.

For the vertical flight, the trim was tested for u0 = [−5, 5] m/s, see Figure 3.5. Inspecting the results,

the maximum climb velocity is limited by the thrust signal that saturates approximately at Vmax = 3

m/s, which was expected in the previous theoretical analysis. However, because the thrust and aircraft

aerodynamics do not account for the slipstream turbulence, the descent velocity is not limited in the
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simulation. In order to consider these effects, the maximum descent velocity is arbitrary imposed as the

symmetric value of the maximum climb velocity, i.e. Vmin = −3 m/s.

Figure 3.5: The first graphic shows the vertical flight envelope u− θ (the trim values are represented by
the black dots and the flight envelope limits by the grey dashed lines. The second and third graphics
show the actuators δE0

and δT0
trim values. When the actuators trim value (represented by the black

dots) overcome the actuators’ limits (represented by the red dashed lines), the flight envelope limits are
defined.

In the same flight orientation, the aircraft trim was also tested for forward and backwards movement,

however it was not possible to achieve reasonable velocities maintaining the aircraft altitude. Besides

the aircraft instability during these movements, they were later tested with the developed flight controller

and the following backwards and forward velocities (velocities in the north direction of the inertial frame

FI , dpN/dt) were achieved: Vmin = −0.6 m/s.

For the horizontal flight, the trim was tested for u0 = [−7, 12] m/s, see Figure 3.6. Inspecting the

results, the maximum level velocity is limited by the thrust signal that saturates at Vmax = 11 m/s, and

the minimum level velocity is limited by the elevons signal that saturates at Vmin = 8 m/s.

3.2 Aircraft Trimming

The theory behind the linearization process is finding a linear approximation of a nonlinear system

which is valid in a small region around an operating point. In aircraft stability and control analysis trim
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Figure 3.6: The first graphic shows the horizontal flight envelope u− θ (the trim values are represented
by the black dots and the flight envelope limits by the grey dashed lines. The second and third graphics
show the actuators δE0

and δT0
trim values. When the actuators trim value (represented by the black

dots) overcome the actuators’ limits (represented by the red dashed lines), the flight envelope limits are
defined.

points, also known as equilibrium points, are usually chosen as points of interest.

Mathematically, a trim point is a point where the system’s state derivatives equal zero, which in this

system model means to assure that the linear and angular accelerations are null and that the inputs

provide an equilibrium point for the aircraft. Formally:

Ẋ = f(X,U ,D) = 0 (3.6)

However, the solution of simultaneous nonlinear equations is not easy to find and, when the dynamic

systems are more complex, it can often be found only by numerical methods. The method chosen to

find the trim points is known as cost function minimization, where the cost function can be defined as:

J = u̇2 + v̇2 + ẇ2 + 10 ṗ2 + 10 q̇2 + 10 ṙ2 (3.7)

To ensure that the cost function’s final value accounts for the different tolerances between the linear

and angular accelerations, note that each angular acceleration is multiplied by a weight factor of 10 since

they are represented in radians. Ideally, at trim, J should be zero.
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Constraints

Beyond the cost function definition, depending on the desired flight conditions, the constraints that

the scalar function f(X,U ,D) will be subject to must be set. The first two desired trim points for this

work are the trim for straight level flight and the trim for hover flight. Therefore, the constraints for each

of these flights are:

u = ud , where ud is the desired longitudinal velocity which must be within the flight

envelope for the longitudinal flight or, in case of hover, must equal zero;

θ = θd , where θd should be equal to α in case of longitudinal level flight or 90◦ in case

of hover flight;

v = 0 , since no lateral velocity is desired;

q1 = q3 = 0 , to ensure an exclusively longitudinal orientation;

q0
2 + q2

2 = 1 , the quaternion constraint;

p = q = r = 0 , to guarantee steady flight;

δl = δr , which means δA = 0 and;

τl = τr , which means δR = 0, since these cases only require longitudinal equilibrium

and any differential deflection would destabilize the lateral equilibrium;

where the angle of attack α (only in level flight), the pitch angle θ (which directly depends on q0 and q2),

the left and right elevon deflections and the left and right propeller signals (which can be represented by

δE and δT , respectively) are the free variables that will ensure the equilibrium between all the modeled

forces and moments in order to obtain null accelerations.

With all the constraints defined, it should now be possible to start searching for the minimization

problem solution. However, because multiple feasible trim solutions for a given trim condition may exist,

it is first necessary to provide an initial state approximation to the algorithm. Different guesses may lead

to different solutions and if they are not precise enough the trim value can be quite poor. The reason is

that gradient descent based nonlinear optimization methods often need a good initial guess for the cost

function to converge to a reasonable value.

Vertical Flight Initial Approximation

For the hover flight initial point, because the aircraft is pointing up, the attitude initial condition is

equal to the Euler to quaternion conversion of π/2 radians in the pitch angle. Additionally, since the

aircraft should be still in the air, which means zero airspeed, the aerodynamic forces are assumed to be

zero. Therefore, the only forces applied in the aircraft are its weight and the thrust force in the opposite

direction. Knowing that, each propeller should sustain half of the aircraft weight and by inverting the

propeller model, one can obtain the initial thrust signal. Thus, if propellers are perfectly aligned with the
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CG plane, no moments are expected and both elevon deflections can be guessed as zero. Resuming,

the full state and control initial vectors for hover flight are:

X0 = [0, 0, 0, 0, 0, 0, −, −, −, q00 , 0, q20 , 0]T (3.8)

U0 = [δE0
, 0, 0, δT0

]T

Note that position states are not relevant. They only depend on where the aircraft is located when

the simulation is initialized.

Horizontal Flight Initial Approximation

The level flight initial point vector is more complex to calculate since aerodynamic forces and mo-

ments are included. In aerodynamic flight, the propellers are responsible for the aircraft velocity which

will then, depending on the angle of attack, generate the necessary lift to equalize the aircraft weight.

Assuming that during this flight mode the wing remains in the linear regime, the lift equation can be

inverted to obtain the initial angle of attack.

L0 = mg → α0 =
L0

1
2 ρ u

2
0 S CLα

→ w0 = u0 tan(α0) (3.9)

where u0 = ud is the desired trim level flight velocity, and CLα
is the lift coefficient slope in the linear

range. The velocity vertical component w0 is determined by inverting (2.12).

Then, considering that the pitching moment is also both linearly influenced by the angle of attack and

the elevon deflection, and that it should be zero to maintain equilibrium, an initial approximation of the

control deflection can be calculated.

Cm0
= Cmα

α0 + CmδE
δE0

= 0 → δE0
= −Cmα α0

CmδE

(3.10)

where the values of Cmα
and CmδE

are interpolated from Cm(α, δ) at α0.

To estimate the thrust input signals, besides of the importance of structural segments drag, this one

is neglected and only the wing aerodynamic drag is considered to simplify the problem. Therefore,

knowing α0 and δE0 , the thrust required is given by the drag formula in (2.33) dividing by two, to keep

both propellers symmetric. Then, once again, the propeller model is inverted and the thrust input signal

guess is calculated.

D0 =
1

2
ρ u20 S CD(α0,δE0

) → T0 =
D0

2
→ δT0

(T0, u0, α0) (3.11)

To conclude, in order to maintain the altitude during level flight, the pitch angle should equal the angle

of attack. Therefore, the attitude initial guess can be calculated using the Euler to quaternion conversion

of α0 radians in the pitch angle. The full state and control initial vectors for level flight are:

X0 = [u0, 0, w0, 0, 0, 0, −, −, −, q00 , 0, q20 , 0]T (3.12)
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U0 = [δE0
, 0, 0, δT0

]T

Constrained Nonlinear Optimization Algorithm

The implementation of cost function minimization trimming method in Matlab is done by executing

the fmincon command. This command starts from an initial point Z0 = [X0; U0]
T and searches, using

a sequential quadratic programming algorithm (identified as sqp - legacy in its options), until it finds a

minimizer point Ze = [Xe; Ue]
T of the cost function J that respects the defined constrains.

Besides the local minimum vector solution, it also returns the value of the cost function J . Since this

is a numerical based model, it is expected that the equilibrium point found do not necessarily reduce the

state variables to zero, but instead to an acceptable tolerance. For each considered state derivatives

for minimization, which are the linear and angular accelerations, a value below 10−5 can be considered

zero. The difference in the units between the linear and angular accelerations was already accounted

by applying a weight factor of 10 in the cost function J . Thus, summing the six variables, the maximum

final value should be less them 6× 10−5. If J satisfies the maximum tolerance, the solution is chosen as

the trim point. If not, the fmincon command should be ran in loop, using the remaining trial points Ze as

the new guesses until one fits the limit value. This procedure is illustrated in Figure 3.7.

Figure 3.7: Trimming Algorithm

To avoid the loop getting stuck on a local minimum without satisfying the maximum tolerance, the

number of loops must be limited, and different initial conditions should be tested. Reasonable trim

results were found with the following fmincon options:

• Termination step tolerance (TolX): 1× 10−15

• Maximum number of function evaluations (MaxFunEvals): 1× 1030

• Maximum number of iterations (MaxIter): 1× 105
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Trim Results

The trim implemented function was tested for high range of initial vertical and horizontal velocities.

Then, in order to validate the results, they were tested in the simulator presented in Section 2.6. Theses

tests helped to design the flight envelop.

For analysis and control design purposes, the selected operating points for each flight mode were

u0 = 0 m/s (hover) for the vertical flight, and a low velocity level flight operating point u0 = 9 m/s for the

horizontal flight. These two lower velocities conditions for each flight mode were chosen because they

both require additional control effort when comparing with higher velocity flights.

The transition flights between these two flight operating modes do not have an equilibrium point in

the same sense as the level or hover flight but linearization around some flight condition is required in

order to obtain the transition controller, as it will be explained in further sections. Therefore, based on

[10], the chosen operating point is in vertical orientation as hover flight but with some climb velocity.

Different values within the vertical flight envelope were tried, however observing that the differences in

the simulations results were not critical, u0 = 1 m/s was chosen. The guess values used for this flight

condition are the same as the ones used to the hover flight, except the longitudinal velocity u0, as the

trim results will be almost the same.

The guess and trim values for hover, transition and level flight are presented in Tables 3.1, 3.2 and

3.3.

Table 3.1: Hover flight initial guess and trim

q0 (-) q2 (-) δE (rad) δT (-)

Guess Z0 0.7071 0.7071 0.0000 0.9184

Trim Ze 0.7071 0.7071 0.0000 0.9219

Table 3.2: Transition flight initial guess and trim

u (m/s) q0 (-) q2 (-) δE (rad) δT (-)

Guess Z0 1.0000 0.7071 0.7071 0.0000 0.9184

Trim Ze 1.0000 0.7071 0.7071 0.0000 0.9375

Table 3.3: Level flight (at 9 m/s) initial guess and trim

u (m/s) w (m/s) q0 (-) q2 (-) δE (rad) δT (-)

Guess Z0 9.0000 1.3034 0.9974 0.0723 −28.840 0.7129

Trim Ze 8.9999 1.4239 0.9969 0.0784 −29.019 0.8304
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3.3 Linearization

Linearization is the process of finding a linear approximation of a nonlinear system with respect to all

variables that is valid in a small region around an operating point. The solution of the dynamic function

(2.48), that describes the system, for a specific point is called the particular solution. The approximated

linear model can be found based on a first order Taylor expansion about this point of interest:

Ẋ ≈ f(X0, U0) +
∂f

∂X

∣∣∣∣
X=X0

(X − X0) +
f

∂U

∣∣∣∣
U=U0

(U − U0) (3.13)

where f(X0, U0) is the particular solution and the other two terms are the first derivative of the solution

with respect to each state and input variable, respectively, at the particular solution multiplied by the

deviation of that variable (i.e. the real value of the variable minus its value on the operating point). To

represent the linearized model, new variables centered about the operating point are defined:

X̃ = X − X0

Ũ = U − U0

(3.14)

The state space representation for linearized model in terms of these deviations can be obtain from

the following expression:
˙̃X = AX̃ +BŨ (3.15)

where A and B represent the derivative of each state with respect to all state and input variables, i.e,

the system matrix and the input matrix, respectively. Nonetheless, this method is based in an analytical

study of the dynamic model, which in a complex nonlinear model is hard to solve. To overcome this

problem, a small disturbance method is implemented. This consists of disturbing each state or input

variable at its equilibrium value and applying it to the dynamic system, so that the derivative between

these two points can be estimated. That said, the elements of the A and B matrices can be expressed

as:
Aij =

∂fi
∂Xj

≈ fi (Xj,0 +∆Xj)− fi (Xj,0)

Xj,0 +∆Xj

Bij =
∂fi
∂Uj

≈ fi (Uj,0 +∆Uj)− fi (Uj,0)

Uj,0 +∆Uj

(3.16)

where fi is the dynamic solution of state i, and ∆Xj is the perturbation of the state or input j. Each

element of A and B matrices relate how the current state or input j affects the change of state i. If the

state change is not dependent on the current state or input its values will be zero.

The dimension of each state or input perturbation ∆Xj depends on its units and must guarantee that

the system remains in the linear range about the equilibrium point, and so, it may also vary depending

on the selected point. That said, the value of the perturbation for each variable is 10−3, in SI units, for the

level flight equilibrium point, and 10−4 for the hover flight, an order of magnitude below, since this flight

mode has a smaller linear region. Besides, a particular attention is given to the attitude states. Since
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a linear increase in a quaternion state does not represent a linear deviation in space, two coordinate

transformations need to be employed. First, the equilibrium quaternion states are converted to the Euler

equilibrium angles, using (B.3), and the specific perturbation, in radians, is applied. Then, the perturbed

Euler states are back converted to quaternion representation, using (B.2), and the state derivatives are

obtained.

Additionally, note that the attitude state derivatives resulting from the system dynamics are also in a

quaternion form. However, in order to obtain a linearized set of Euler angles in the A and B matrices,

the quaternion derivatives need to be converted to Euler angles derivatives. The benefit of Euler angles

is that the resulting mathematical model is very easy to decouple since each angle only describes

movement on a single plane. The quaternion derivatives to Euler derivatives conversion is explained in

Appendix B.

In aeronautics, when the matrices are written in the Euler form, if the lateral variables do not affect

the longitudinal ones, and vice versa, i.e. the correspondent matrix element is zero or close to zero, its

analysis is typically decoupled into two separate models: the longitudinal model, which expresses the

aircraft characteristics about the vertical and longitudinal motion, and the lateral model, which expresses

the aircraft characteristics about the lateral motion. Since this work is focused on the development of

a longitudinal controller, and the models decoupling is feasible, only the states and input variables of

interest are analysed. Therefore, the longitudinal variables are:

Xlon = [u, w, q, θ, h]T Ulon = [δE , δT ]
T (3.17)

where h = −pD represents the altitude. Although pN is also a longitudinal state, this state is not relevant

for the model characterization.

3.4 Longitudinal Analysis

In this section the longitudinal linear model is assessed. The full flight envelope will be analysed, in

a mater of stability, controllability and observability, through a particular analysis of the three selected

operating points (hover, transition and level flight). The system and control matrices for each of these

points are presented in the following section.

3.4.1 Stability

Stability, as one of the most important performance specification of a control system, can be de-

scribed as what does the system do as the time goes to infinity [26]. A system is considered unstable if,

when perturbed from its equilibrium point, it does not return to its initial condition.

In a multi state system, if at least one of its state variables is unstable, the full system itself is said

to be unstable. In continuous time control theory, this means that at least one of the eigenvalues of the

state space A matrix has real part greater than zero, or that there are more than one pole at the origin.

For the stability analysis two operating points for each flight orientation were object of study in order
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to understand the system stability evolution with the change of velocity within the flight envelope.

Vertical Flight

First, for the vertical flight, the hover operating point is analysed. The state-space representation

about this equilibrium point is:

˙̃Xlon =



−0.4011 0.0001 0 0.0049 0.0009

0 −315.14 −6.3485 −9.7996 0

0 −6.9281 0.1340 0 0

0 0 1 0 0

−1.0000 0 0 0 0


︸ ︷︷ ︸

Ahover

X̃lon +



0 21.2101

−1.2861 0

−22.2886 0

0 0

0 0


︸ ︷︷ ︸

Bhover

Ũlon

Inspecting the longitudinal system matrix Ahover, the hover dynamics are characterized by a very

small set of parameters. It has more zeros than the well known typical longitudinal system matrix for

aerodynamic flight. About the longitudinal control matrix Bhover, one should notice that a variation in

elevon equals deflections δ̃E does not influence the change of longitudinal acceleration ˙̃u (in body frame

FB), and that a variation in throttle signal δ̃T does not influence the change of vertical acceleration ˙̃w or

the pitching rate derivative ˙̃q. As excepted, both input variations do not impact directly the pitch angle

derivative ˙̃
θ nor the altitude derivative ˙̃

h.

The Ahover matrix eigenvalues and respective eigenvector are shown in Tables 3.4 and 3.5.

Table 3.4: Hover Flight Longitudinal Eigenvalues

Eigenvalues (rad/s) Damping (ζ) (-) Frequency (ωn) (rad/s)

−3.99 · 10−1 1 3.99 · 10−1

−2.35 · 10−3 1 2.35 · 10−3

−3.15 · 10+2 1 3.15 · 10+2

−3.47 · 10−1 1 3.47 · 10−1

6.20 · 10−1 −1 6.20 · 10−1

Looking at these results, some topics can be highlighted:

• All eigenvalues are fully damped which means that the system behaviour over this operating point

does not oscillate.

• The last eigenvalue has a positive real part which dictates the system instability. Analysing the

respective eigenvector, its instability is mainly related with the pitch angle θ and pitching rate q.

• The third eigenvalue (mainly associated with the w velocity state) is located far to the left of the

real axis and so is considered to respond rapidly. Because its value is at least 3 orders higher than

the others, it can be neglected when studying the steady state response.
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Table 3.5: Hover Flight Longitudinal Eigenvectors

Eigenvectors v1 v2 v3 v4 v5

u −0.3704 −0.0024 −0.0000 −0.0873 0.0041

w 0 0 0.9998 0.0220 −0.0369

q 0.0000 0.0000 0.0220 0.3162 0.5266

θ 0 0 −0.0001 −0.9104 0.8493

h −0.9289 −1.0000 −0.0000 −0.2512 −0.0065

• Eigenvalues which are more near to origin are called dominant eigenvalues. The steady response

of a system is dominated by these ones.

• The second eigenvalue is almost over the origin and so it can be seen as an integrator. This

eigenvalue is associated with the altitude state variable.

• Because one eigenvalue is unstable, the whole system is considered to be unstable. Consequently,

a control system is demanded to stabilize the aircraft vertical longitudinal motion.

Figure 3.8: Vertical Eigenvalues Evolution Map. The first plot includes all the vertical flight envelope
eigenvalues and the next pictures are zoomed over the grey areas of its previous plot.

In addition to hover eigenvalues, the eigenvalues of the full vertical flight envelope, which means for

u0 = [−3, 3] m/s, are plotted in Figure 3.8. The evolution of the system eigenvalues between these two

operating points is represented by the grey dots. Each symbol represent a different eigenvalue, and
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the colors represent a specific velocity. The black symbols represent the hover eigenvalues, u0 = 0

m/s, shown in Table 3.4. The red symbols represent the eigenvalues for u0 = 1 m/s, and the pink and

bordeaux symbols show the eigenvalues for u0 = −3 m/s and u0 = 3 m/s, respectively. Note that, from

hover, as the longitudinal velocity increase or decrease, the fastest eigenvalue moves to the right, and

the unstable eigenvalues move even more to the right making the instability more accentuated which will

cost more control actuation to stabilize the system. When the velocity is higher than 1.3 m/s, the third

and fourth eigenvalues (represented by a triangle and a star, respectively) start to compose a conjugate

pair and the system starts having some oscillation. The second eigenvalue, related with the altitude

state, stays at the origin for all velocities within the flight envelope.

Transition Flight

Although this flight condition is included in the vertical flight analysis, as it will be further explained,

a linear model for the transition flight controller is needed. Hence, the state-space representation about

the transition equilibrium point u0 = 1 m/s is:

˙̃Xlon =



−0.5349 0.0001 0 0 0.0009

0 −16.776 0.6061 −9.7989 0

0 −10.558 −2.0834 0 0

0 0 1 0 0

−1.0000 0 0 0 0


︸ ︷︷ ︸

Atrans

X̃lon +



0 21.2565

−1.3672 0

−23.6944 0

0 0

0 0


︸ ︷︷ ︸

Btrans

Ũlon

As expected, it is noticeable that the systems’ matrices slightly resembles to the hover linear model.

The Atrans matrix eigenvalues are shown in Table 3.6.

Table 3.6: Transition Flight Longitudinal Eigenvalues

Eigenvalues (rad/s) Damping (ζ) (-) Frequency (ωn) (rad/s)

−5.33 · 10−1 1 5.33 · 10−1

−1.76 · 10−3 1 1.76 · 10−3

−1.58 · 10+1 1 1.58 · 10+1

−4.48 · 10+0 1 4.48 · 10+0

1.46 · 10+0 −1 1.46 · 10+0
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Horizontal Flight

The state-space representation for horizontal flight about its equilibrium point at u0 = 9 m/s is:

˙̃Xlon =



−1.1666 2.2109 −1.1612 −9.6570 0.0002

−0.7345 −6.9164 6.5293 −1.6658 −0.0009

6.2661 −41.2418 −20.7876 0 0

0 0 1 0 0

−0.1695 0.9855 0 −9.1320 0


︸ ︷︷ ︸

Alevel

X̃lon+



1.7381 14.9578

−4.9784 −2.8722

−111.8187 10.7099

0 0

0 0


︸ ︷︷ ︸

Blevel

Ũlon

The longitudinal system matrix Alevel has the typical structure of a conventional aircraft platform,

and so the longitudinal aircraft modes can be identified [27]. The Alevel matrix eigenvalues are shown

in Table 3.7.

Table 3.7: Level Flight Longitudinal Eigenvalues

Eigenvalues (rad/s) Damping (ζ) (-) Frequency (ωn) (rad/s) Aircraft Mode

−13.9± 15.2 i 6.76 · 10−1 2.06 · 10+1 Short-Period

−0.543± 1.12 i 6.20 · 10−2 7.90 · 10−1 Phugoid

−5.94 · 10−4 1 5.94 · 10−4 -

A typical longitudinal model has two pairs of complex poles and, because five state variable were

considered, an additional one at the origin:

• The first pair of complex poles, the ones with a higher negative real part correspond to the short-

period mode which describes a rapid pitching from the aircraft about its center of gravity. Generally

a feedback of the pitch rate q through the ”elevator” deflection δE helps to reduce the oscillation

and period time.

• The other pair corresponds to the phugoid mode which represents the slow interchange of kinetic

energy and potential energy as the aircraft tries to re-establish an equilibrium flight condition. To

improve the phugoid response, generally a feedback of the pitch angle θ through the ”elevator”

deflection δE is used.

• The pole at the origin, as in hover, works as an integrator and is associated with the altitude state

variable.

In addition to the level flight eigenvalues, at u0 = 9 m/s, the eigenvalues of the full horizontal flight

envelope, which means for u0 = [8, 11] m/s, are plotted in Figure 3.9. The evolution of the system

eigenvalues between these two operating points is represented by the grey dots. Each symbol represent

a different eigenvalue, and the colors represent a specific velocity. The black symbols represent the

level eigenvalues for u0 = 9 m/s, shown in Table 3.4. The pink, red and bordeaux symbols show the
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eigenvalues for u0 = 8 m/s, u0 = 10 m/s and u0 = 11 m/s, respectively. In opposition to the vertical flight,

in this flight orientation, the eigenvalues structure remains the same. With the velocity increase, the

poles tend to move left and closer to the real axis, which means that the response tend to get faster and

less oscillatory. Therefore, higher the speed, more stable is the system, and so more control actuation

is needed to maneuver the system.

Figure 3.9: Horizontal Eigenvalues Evolution Map: from u0 = 9 m/s (in black) to u0 = 12 m/s (in red).

3.4.2 Controllability

Before deciding what control strategy apply to a system, its controllability should be analysed. The

concept of controllability denotes the possibility of forcing a system into a particular state using only

certain admissible manipulations, and can be verified by looking into the dynamic and input matrices. If

one of the system’s eigenvalues is not controllable, that part of the dynamics will remain untouched in

the closed-loop system, and therefore the desired output is not reachable.

Mathematically, controllability, i.e number of uncontrollable states in a system equals zero, is repre-

sented by:

n− rank [B AB A2B ... An−1B] = 0 (3.18)

where n is the number of state variables, and rank is the number of linearly independent rows in a

matrix. Making use of the Matlab commands ctrb and rank to implement this equation, both hover and

level flight linear system models, with n = 5, are controllable. The same evaluation was also done to

flight envelope velocity limits and successful results were obtain. Thus, given that the structure of these

matrices within each flight mode does not critically change with airspeed, the controllability of the full

flight envelope is implied.
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Chapter 4

Flight Control Design

In 3 the linearized aircraft systems were derived for both vertical and horizontal flight. This section

covers the controller design including some introductory theory, the presentation of the followed strategy

and the description of each step of its implementation.

Control system design has the main goal of constructing a system that has a desirable response to

specific inputs. A perfectly defined noiseless system could be controlled using open-loop control, but,

unfortunately, the immense complexity of real life systems makes this never the case. Thus, the need

for closed-loop control arises from the various unknowns entering the system. Closed-loop systems

are designed to automatically achieve and maintain the desired output condition by comparing it with

the actual condition. Since the desired output or control action are dependent on the output itself,

these feedback control systems make possible to control a system containing an acceptable amount of

unknowns.

During control design, one should have in mind two response stages: transition and steady-state [28].

A desirable transient response should be sufficiently fast and without excessive oscillations. A desirable

steady-state response should be capable of following the desired output with sufficient accuracy. In

order to find a good control solution that suits the desired requirements, several techniques from classic

to more modern control can be applied. In the next section, an optical control strategy called Linear

Quadratic Regulator (LQR) is presented.

Since this work is focused on the development of the longitudinal control, throughout the following

sections, the lateral motion is assumed to be non-existent. This simplification constitutes a reasonable

approximation of an additional lateral stabilization, which is not subject of this work.

4.1 LQR Theory

Linear Quadratic Regulator (LQR) is an optimal state variable feedback control strategy which at-

tempts to find a controller that offers the best performance based on a specific measurement method

[29]. Fundamentally, the LQR algorithm tries to find a balance between the amount of energy related

with the state error and the energy consumed by the control actuation. For instance, to achieve a small
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state error a large control signal is required, but to decrease the control signal energy a larger state error

will result.

Mathematically, the LQR design is performed by minimising a quadratic cost function. The cost

function is constructed by assigning a certain weighting to each state and input corresponding to their

relative importance. The quadratic cost function is described as followed:

J =

∫ ∞

0

[
XTQX +UTRU

]
dt (4.1)

where Q and R represent the state and input control weighting matrices respectively. These matrices

must be positive and are usually diagonal.

Q = diag
[
Qu Qw Qq Qθ Qh

]
(4.2)

R = diag [ QδE QδT ] (4.3)

Because it is difficult to intuitively understand the effect of the weightings, a first estimation for these

coefficients can be given by the Bryson’s rule. According to this method, each term of the diagonal

matrix is the square of the inverse of the maximum deviation expected for the corresponding variable

during the maneuver:

Qi =
1

(max deviation in i from steady state )2
(4.4)

Besides of being used as a starting point for the weighting matrices, other advantage of this method

is the units compensation through scaling. Nevertheless, caution must be taken when refining the state

weightings by inspection alone. Apparent performance, especially during manoeuvres, can be greatly

improved by tweaking the state weightings which can lead to a loss of insight and is strongly discouraged.

A better approach is to find a valid reason for changing weightings whenever possible.

The solution to the cost function minimization takes the form of a difference equation known as the

matrix Ricatti equation, and the solution to this equation is suited to feedback control since it has the

form of full state feedback:

Ũ = −KX̃ (4.5)

Using the Matlab command lqr, am×nmatrix K is obtained, where n is the number of state variables

and m is the number of input control variables.

Besides the positive and symmetrical Q and R matrices, other requirements must be fulfilled to use

LQR control [30]:

• As a linear control method, in order to use this control solution the system must be linear. The

stabilization of nonlinear systems is feasible within a neighbourhood of the equilibrium point which

is the reason why the tail-sitter model was linearized.

• Additionally, he linear state-space model is required to be controllable and observable, which from

the analysis presented in the previous chapter it is conclude that both linear systems (vertical and

horizontal) satisfy them.
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From this control method, some variation in its implementation can be done in order to meet better

results and specifications. Some theory and explanations of variations used in the developed controller

are given below.

Feedback with Variables in Servomechanism

The final feedback matrix K can be applied in some different ways [27]: it can be placed either in

the feedback loop, in order to stabilize the system, or in the direct loop, to control (not cancel) the error

between the value of the states and the references.

With feedback with variables in servomechanism, the final actuation signal U is given by:

U = Kc(Xref −Xc)−KpX̃p (4.6)

where Kp is the feedback matrix composed by the column vectors of K correspondent to the com-

plementary states Xp (inner feedback loop), and Kc is composed by the column vectors of K corre-

spondent to the output/desired states Xc (direct loop). Its implementation is represented by the block

diagram in Figure 4.1.

Figure 4.1: Feedback with Variables in Servomechanism Block Diagram

Feedback with Integrative Variables

Even though the closed-loop dynamic response is stable, the resulting response may not be as

desired. As a PI controller in classic control introduce integrative terms in order not only to stabilize

states or outputs but also to force its cancellation with constant entries, in optimal control this output

error cancellation is also possible. Therefore, to cancel a variable Xi under stationary condition, its

integrated variable can be introduce as a supplementary state:

Ẋn+1 = Xi (4.7)

The full state gain matrix can be separated into two gain matrices: one for the request in the outer

loop, and the other for the state stabilization in the inner loop of the controller. Therefore, the controller

input in time domain takes the following form:

U = −KX̃ +Ki

∫ t

0

E(t) dt (4.8)

In theory, the number of the request values (or integrative variables) must not exceed the number of
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actuator inputs available.

Integral Windup Compensation

Since the linear controller is designed to operate within a linear range, ignoring the actuator nonlin-

earities, such as saturation, will cause the integrator to windup which will significantly deteriorate the

closed-loop performance. Integral windup is the process of accumulating the integral term of the con-

troller output [31]. If the reference command r(t) do not saturate the actuator the rising time is small and

the integral error e(t) is quickly annulled, see Figure 4.2(a). However, if the reference command applied

causes the control variable to attain the actuator limit during the transient response, the control error

decreases more slowly and therefore the integral term becomes much larger, see Figure 4.2(b). As this

accumulated error is unwound, the consequences are an excessive overshooting and long settling time

which may cause the instability of the system, see Figure 4.2(c).

Figure 4.2: Windup illustration: offset by errors in the other direction

In order to avoid this behaviour, the controller integral term is kept constant during periods when the

control action is saturated. This is implemented using a switch before the integrative action controlled

by a saturation flag. Its implementation is represented by the block diagram in Figure 4.3.

Figure 4.3: Integral Windup Compensation Block Diagram

4.2 Control Strategy

Before making some design choices, it is important to determine the exact goals and some output

specifications. Therefore, taking into account the proposed minimum flight missions, the main require-

ments for this controller are to perform:

• vertically and horizontally stable flight;

• climb and descend in both flight modes;

• move forward and backwards in vertical flight mode;
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• control longitudinal velocity in horizontal flight;

• perform autonomous transitions between flight modes;

• perform autonomous take off and landing.

There are also suggested some quantitative performance limits. However, considering that the

present work is the first iteration of this flight controller, these should not be considered satisfactory

for a real implementation scenario. That said, based on similar works [10], [11], [12], [16], the following

limits are assumed to be acceptable:

• 2 seconds in the step response settling time for each input request during vertical or horizontal

flight modes;

• 4 seconds to complete both transition maneuvers;

• 1 degree error in the pitch angle request (a restrict constrain is imposed because this variable is

critical to the aircraft stability);

To achieve these requirements, this section is divided as follows: First, the controller input types

(or channels) are defined and it is explained how they are supposed to influence the aircraft behaviour.

Second, the overall control structure is presented in detail. The next sections describe how each flight

mode operates.

4.2.1 Controller Inputs

Figure 4.4: Controller input types

Associating the software inputs implementation with a with a UAV remote transmitter used to manu-

ally flight the aircraft, the following inputs are used: two switches and two handles. Only the up and down

movement of the handles is considered, the left and right movement is left for a future lateral controller.

These four inputs are illustrated in Figure 4.4 and are explained below.

• Flight Mode Switch: this input has two positions that indicate the desired flight mode:

Position 0 - Vertical Flight Mode which will also be denoted as Hover, since it is flown about

this operating point;
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Position 1 - Horizontal Flight Mode which will also be denoted as Level, since it is flown about

the level operating point referred in the trimming section.

• Take-Off / Land Switch: this input switch allows the autonomous take off and land. The aircraft

must be initialized in the ”Land” switch position and, once it is changed to the ”Take-Off” switch

position, it will autonomously climb until it reaches the pre-established take-off altitude. Then the

aircraft is free to receive any other type of control inputs and fly. To autonomously land the aircraft,

the aircraft must be in the vertical flight mode and only then the ”Land” switch position can be

activated. Then the vehicle is going to safely descend and reduce its velocity until it reaches the

ground at almost zero velocity.

Position 0 - Land Mode

Position 1 - Take-Off Mode

• Handle 1: varying between -1 and 1, this input signal controls the aircraft movement in the vertical

plane. During Vertical Flight Mode, this movement is done by controlling the aircraft longitudinal

velocity u, and in Horizontal Flight Mode it is done by controlling the pitch angle θ which will

consequently vary the aircraft climb angle γ = θ − α.

• Handle 2: varying between -1 and 1, this input signal controls the aircraft movement in the hor-

izontal plane. During Vertical Flight Mode, this movement is done by controlling the pitch angle

θ allowing the aircraft to move forward and backwards, and in Horizontal Flight Mode it is done

by controlling the longitudinal velocity u, increasing or decreasing the aircraft velocity around the

equilibrium velocity.

The presented handles logic is resumed in Figure 4.5.

Figure 4.5: Controller inputs explanation

4.2.2 Controller Structure

After receiving these input signals, the objective of the control system is to generate actuators signals

δL, δR, τL, τR to achieve a reference behavior. The block diagram of the controller is shown in Figure 4.6.

Each block is then explained below.
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Figure 4.6: Controller Structure

Mode Selector:

This block reads whether flight mode switch is in Vertical Flight Mode (H: Hover) or Horizontal Flight

Mode (L: Level). On the one hand, during stable flight, if there is no variation detected between the last

mode and the actual mode the outputted flight mode remains the same as the input mode. However, if

variation is detected the outputted mode becomes the corresponding transition mode (X: Transition or

BX: Back Transition). On the other hand, to end a transition mode the aircraft actual attitude is compared

to the equilibrium attitude of the desired flight condition, i.e. the Transition mode ends once the θ < θL,

and the Back Transition ends once θ > θH . This logic is illustrated in Figure 4.7.

Figure 4.7: Mode Selector Flowchart

References Generator:

This block outputs the reference states uref and θref that follow to the LQR controller. Depending

on the flight mode printed by the Mode Selector block, this module manages the controller inputs in two

separate ways, see Figure 4.8.
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Figure 4.8: References Generator Flowchart

During Hover or Level, this block computes the handles inputs and prints the desired references to

the LQR controller in order to lead the aircraft to behave as pretended. Since the inputs from the con-

troller handles are limited between -1 and 1, to ensure that the aircraft is kept within the flight envelope

and the linear regime in each flight mode, the input values are then processed in specific ways. The

corresponding references equations for Hover and Level are presented below.

• Hover: The climb and descend velocity are limited to ±3 m/s from the equilibrium condition which

is uH = 0 m/s. The forward and backwards movement results from a pitch angle deviation limited

to ±25◦ ≈ ±0.436 rad from the hover equilibrium attitude which is θH = 90◦. The minus sign is

because a positive handle 1 signal means moving forward and so the pitch angle must reduce from

its equilibrium position to redirect the aircraft into the moving direction.

uref = 3× handle2 (4.9a)

θref = θH − 0.436× handle1 (4.9b)

• Level: The longitudinal velocity is limited to ±1 m/s from the level equilibrium velocity uL = 9

m/s to ensure that the aircraft remains within the flight envelope. The pitch angle is limited to an

amplitude equals to the level equilibrium attitude θL ≈ 9◦, which means a variation of θL
2 up or

down.

uref = uL + 1× handle1 (4.10a)

θref = θL +
θL
2

× handle2 (4.10b)

During Transition and Back Transition, the output references do not depend on the handles input. The
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uref and θref trajectories are previously defined and therefore only depend on time from the beginning of

the maneuver. The corresponding references equations for Transition and Back Transition are discussed

below and were based on [10] and [12].

• Transition: The aircraft longitudinal velocity during the transition changes from uH to uL. Initially

a step function between this two values was used, but, to decrease the altitude gain during the

maneuver, the reference was adapted so that the response of the thrust was improved. The

second attempt was to use a ramp which already improved a lot its performance. Lastly the smooth

curves represented by the following equations were tested and obtained the best response. The

variable T = 3 seconds is the duration of the Transition and was selected iteratively until it reaches

the minimum feasible maneuver time. The same reasoning was use to the pitch angle reference.

These reference equations are plotted in Figure 4.9.

uref = uH +
uL − uH

2

(
1− cos

π t

T

)
(4.11a)

θref = θL − θL − θH
2

(
1 + cos

π t

T

)
(4.11b)

• Back Transition: During this maneuver, the longitudinal velocity u should go to uH and the pitch

angle θ should reach θH as fast as possible. To do this, the elevons actuation should saturate

and the thruster signal decrease. However, in order to boost the generated pitching momentum

and reduce the Back Transition duration, the elevons authority can be amplified by increasing the

slipstream velocity through the thruster actuation too. Therefore, two steps were chosen for both

state references which will immediately saturate both actuation signals and perform a faster Back

Transition. These reference equations are also plotted in Figure 4.9.

uref = uL (4.12a)

θref = θH (4.12b)

When the Take-Off / Land Switch is used and the altitude controller is activated (which, as explained

before, can only occur during hover flight), uref is bypassed by the uh from the Altitude Controller block,

and just the θref from the Hover references equations is used to guarantee stability.

Altitude Controller

The altitude tracking is achieved by generating the longitudinal reference velocity uh from the altitude

error signal herror. In order to automatically take-off and land, a PID (Proportional Integral Differential)

classic controller was used, see Figure 4.10. The integral part assures the precise altitude reference

tracking but usually also introduces some overshooting to the response. Since this controller is respon-

sible for the autonomous landing, an overshooted response would crash the aircraft into the ground

which is not desirable. That said, the derivative term is added to guarantee that the response is over-

damped and that the aircraft will touch the ground with almost zero velocity. The proportional, integral
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Figure 4.9: Transition and Back Transition References

and derivative gains used to obtain a suitable response were Kph = 1 s-1, Kih = 0.01 s-1 and Kdh = 2 s-1.

Figure 4.10: Altitude PID Controller Diagram

LQR Longitudinal Controller

The longitudinal variables to be controlled in this block are only the u, w, q and θ. The altitude h is

controlled in the outer-loop altitude PID controller as explained earlier.

As requirement, the LQR longitudinal controller must stabilize the aircraft and regulate its velocity

u and pitch angle θ accordingly to the given references. However, only one of these variables can be

tracked at a time. The aerodynamic (or horizontal) aircraft dynamics relate the velocity u and the pitch

angle θ. Therefore, they are not independent and one has to compensate and trim the aircraft for a

request in the other. Between these two, it was chosen to precisely track the θ because it is seen as a

more critical variable to ensure the aircraft stabilization during all its flight modes.

That said, the LQR control method was applied, as described in Section 4.1, considering the four

u, w, q and θ longitudinal variables plus an integrative θi. The velocity u will be controlled using the

servomechanism method.
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As a linear control technique, the LQR control method only works around the equilibrium point it was

design for. This means that not only the dynamic and input matrices A and B to calculate the gain matrix

depend on the operating mode, but also the LQR state and input weighting to find the initial Q and R

matrices by making use of Bryson’s method. In addiction, also the state trim values that are subtracted

to the actual state values and the input trim values that are added by the end vary with the operating

mode. The Hover, Transition and Level state and input vectors along with the corresponding A and B

matrices are provided in the previous chapter. For the Back Transition there are used the same vectors

and matrices used for the Transition.

Weighting Selection

The considered maximum deviations from equilibrium states for each operating mode, which are

applied in Bryson’s method, are listed in Table 4.1. The explanation of each selected values is given

below.

Table 4.1: Maximum state and input deviations from equilibrium

u (m/s) w (m/s) q (rad/s) θ (rad) θi (rad) δE (rad) δT (-)

Hover 0.1 1 0.1 0.001 0.0001 0.001 0.01

Level 10 1 1 0.01 0.001 0.01 0.01

Transition 10 10 1 0.01 0.001 0.001 0.01

Back Transition 0.1 10 1 0.01 0.001 0.001 0.01

• Longitudinal Velocity u: In Hover, the longitudinal velocity u is not decisive for its stabilization and

it has no integrative variable. The chosen velocity deviation is constricted to help on the reference

tracking. In Level flight, the longitudinal velocity u is loosened when compared with Hover because

its precise tracking is not possible with the implemented design. The reason is that the pitch angle

is being tracked with an integrator, if the velocity is increased and the pitch angle is maintained,

the aircraft starts to climb and so will not perform a level flight. During Transition, the objective is to

follow the pitch angle reference. The velocity is also loosened which will prevent the aircraft to over

accelerate and gain altitude. On the other hand, during Back Transition, the velocity is constricted

to help the thrust actuator to saturate and increase the elevons authority. That leads to a smaller

maneuver time duration.

• Downward Velocity w: In Hover, comparing to the longitudinal velocity u, the downward velocity w

is not so constricted. This allows the system to follow the pitch angle references. Contrarily, in Level

flight, the downward velocity w should be more accurately tracked than the longitudinal velocity u.

This should prevent the aircraft from leaving the Level operating mode. In both transitions, the

downward velocity w tracking is loosened when comparing with Hover and Level.

• Pitching Rate q: In Hover and Level, this variable is more closely tracked since the objective is for

its value to remain zero. During transitions, the pitching rate maximum deviation can be loosened

when compared with the other two modes.
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• Pitch Angle θ: The maximum deviations pretended during Level and transitions modes are in

the order of one degree which in radians are almost two orders below. In Hover, its maximum

deviations are tightened because in order to guarantee that the system remains in the linear regime

the pitch angle limits are more restrict.

• Pitch Angle Integrator θi: The maximum deviation of the integrator state is ten times lower than

the original state to allow a faster reference tracking.

• Elevons δE : During Level, the maximum deviation pretended in elevon’s deflection is in the order

of one degree. In Hover, the elevon’s deflection is constricted because this mode is more sensitive

to disturbances and naturally unstable. During transitions, a big amplitude of requests is done

to the controller. Therefore, the maximum deviation is also tightened, when comparing to Level

mode, to avoid the actuation to easily saturate.

• Thrusters δT : The maximum deviation selected for the thruster input is one percent of its maxi-

mum value for all operating modes.

Gain Matrix

Using the values from Table 4.1 in (4.4), the matrices Q and R are calculated. Then, using the Matlab

command lqr(A,B,Q,R), the gain matrix K is obtained for each flight mode. These results are presented

in Table 4.2.

Table 4.2: LQR complete gain matrix K for each operating mode

u (m/s) w (m/s) q (rad/s) θ (rad) θi (rad)

Hover
δE (rad) 0.0000 0.0204 −0.9648 −10.1039 −1.0000

δT (-) 0.0872 0.0000 −0.0000 0.0000 0.0000

Level
δE (rad) −0.0497 0.1884 −0.0824 −2.8389 −9.8530

δT (-) 0.0515 −0.0963 0.0257 1.2157 1.7086

Transition
δE (rad) 0.0000 0.1179 −0.2167 −1.0624 −1.0000

δT (-) 0.0755 0.0000 −0.0000 −0.0000 0.0000

Back Transition
δE (rad) 0.0000 0.1179 −0.2167 −1.0624 −1.0000

δT (-) 0.1164 0.0000 −0.0000 −0.0000 0.0000

Kc Kp Ki

• Kc is a [2x1] vector which corresponds to the first column (u) of K;

• Kp is a [2x3] matrix which corresponds to the second (w), third (q), and forth (θ) columns of K;

• Ki is a [2x1] vector which corresponds to the last column (θi) of K.

LQR Structure

The structure of the LQR controller block is illustrated in Figure 4.11. The velocity u is controlled

using servomechanism where the velocity error uerror is multiplied by the Kc vector. The pitch angle

θ is tracked making use of an error integrator where the pitch angle error θerror is multiplied by the Ki
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vector. Note that an Anti-Windup mechanism is applied, i.e. when the actuation saturates the integrator

output remains constant instead of continuously growing. The other longitudinal variables w, q and θ are

stabilized by multiplying the variables deviations from the equilibrium point X0(w, q, θ) with the feedback

Kp matrix. Finally, all terms are summed and then added to the actuation equilibrium point U0(δE , δT )

and the final control signals are obtained.

Figure 4.11: LQR Controller Diagram where pink boxes indicate variable flight conditions and corre-
sponding gain matrices

The values of the equilibrium states and inputs vectors, X0 and U0, and the gain matrices, Kc, Kp,

Ki, change depending on the output of the Mode Selector block as they vary with the actual operating

mode. This technique, of controlling nonlinear systems with dynamics changing from one operating

condition to another, is commonly called Gain Scheduling. In Figure 4.11, the changing vectors and

matrices are colored in pink.

Actuator Allocation

The last module of the controller is the Actuator Allocation. Its objective is to translate the desired

conventional control signals δE , δA, δR and δT into actuator signals, namely the left and right elevons

deflections δl, δr, and the left and right throttle signals τl, τr. For this purpose, the equations (4.13) are

inverted:

δl = δE + δA δr = δE − δA

τl = δT + δR τr = δT − δR

(4.13)

Note that, once only longitudinal dynamics are being controlled, δA and δR are null. Therefore, the

left and right signals (both in elevon’s deflection and throttle) are always equal.
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Chapter 5

Simulation Flight Results

The following chapter is divided into two parts. First, the inputs are individually tested and the con-

troller response is analysed. Second, the two minimum flight missions are simulated and their results

are presented.

5.1 Response Analysis

This section analyses the controller initial reliability, investigates the handles step responses in both

operating modes and also the transitions and take-off and land performances.

In Hover and Level mode, a step in both left and right handles are tested separately. To test Transition,

the aircraft is initialized in Hover and then the Mode Selector Switch is shifted. The handles are left still in

zero/null position. To test the Back Transition, the opposite is done. The aircraft is initialized in Level flight

and the Mode Selector Switch is shifted. Finally, to test the altitude controller, the aircraft is initialized

in vertical orientation on the ground and the Take-Off/Land Switch is shifted. After the aircraft achieving

the reference take-off altitude, the switch is again shifted and the aircraft autonomously lands.

The simulations’ results are presented in the following sections. For each scenario, all simulation

state and input variables are plotted separately. The blue lines in each graph represent the simulation

results. The red lines represent the actuators’ limits. The green lines in the velocity u and pitch angle

θ plots show the reference values given to the LQR controller, and the green line in the altitude h plot

shows the reference value given to the altitude controller when the Take-Off/Land Switch is used.

Additionally, an image of the aircraft simulated environment for each scenario is inserted to help the

aircraft trajectory and attitude changing visualization.
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5.1.1 Hover

In both Hover simulations the aircraft is initialized with the aircraft pointing up, facing the North di-

rection, above the ground. Flight Mode Switch starts in position 0 i.e. Hover mode, and Take-Off/Land

Switch starts in position 1 i.e. Take-Off mode.

Step in Handle 1

In the first case, at t = 1 s a step input is given in handle 1 which produces a step request to the

pitch angle θref . This request results in an elevon response δE and a small decrease in the throttle

signal δT . Although the aircraft tends to a steady-state condition, the system does not achieve it in

the given time. The system is capable of following the attitude reference with less then 1◦ of error and

move forward, however, during this maneuver some aerodynamic forces appear and the aircraft starts

gaining altitude. Then, at t = 7 s a negative input step is given in handle 1 to return the aircraft to hover

conditions. The aircraft takes near 5 s to achieve the initial steady condition which is higher than the

stated requirements previously. Between t = 5 s and t = 10 s the aircraft gains 1 m in altitude per 3 m

in the north direction. Since this movement should only occur in the horizontal plane, a smaller altitude

gain should be attempted. The settling time for the second input request is about 5 or more seconds

which does not fulfill the stated requirements.

To determine the steady-state velocities u and w for a unit step in handle 1, other simulation was

run with a higher stop time. To track the pitch angle reference, the aircraft stabilizes at u = 4.5 m/s and

w = 0.73 m/s with a settling time about 70 s. The elevon and throttle signals stabilize at δE = −19.8◦

and δT = 88%. Besides of the settling time high deviation from the stated requirements, this flaw is not

considered to be critical since vertical flight is a really unstable flight condition and the aircraft is not

supposed to flight much time in this mode.

(a) Plane XZ Visualization (b) 3D Visualization

Figure 5.1: Step in handle 1 during Hover (simulation visualization)
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Figure 5.2: Step in handle 1 during Hover
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Step in Handle 2

In the second case, at t = 1 s a step input is given in handle 2 which produces a velocity step

request uref . This request results in a change of the throttle signal δT , which saturates until the velocity

reaches its final value, while the elevon’s signal remains null. The aircraft altitude continues to increase

and, as intended, the aircraft north position does not modify. Beside of the uref = 3 m/s request, the

velocity stabilizes at a minor value of u = 2.4 m/s. This result was expected since this velocity error is not

controlled with an integrator. At t = 6 s a negative input step is given in handle 2 and the aircraft returns

to its hover trim condition. Both positive and negative step requests only took about 2 s to stabilize which

is assumed to be acceptable considering the stated requirements. Note that, as no pitch angle request

was made, the variables pN , θ, w, q and δE stay null, which was expected.

Figure 5.3: Step in handle 2 during Hover (simulation visualization)
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Figure 5.4: Step in handle 2 during Hover
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5.1.2 Level

In both Level simulations the aircraft is initialized at level trim conditions, facing the North direction,

above the ground. Flight Mode Switch starts in position 1 i.e. Level mode, and Take-Off/Land Switch

starts in position 1 i.e. Take-Off mode.

Step in Handle 1

In this case, at t = 1 s a step input is given in handle 1 which produces a velocity step request uref

of 1 m/s over the trim velocity. Although the aircraft can trim at that velocity, its precise tracking is not

possible because this variable is controlled with a servomechanism direct loop feedback and not with

an integrator. The velocity only increases 0.2 m/s from its equilibrium velocity which results in an error

of about 80% and is not acceptable. When the velocity request changes, the pitch angle oscillates less

than 1 s and then stabilizes at the initial trim value. Since this value θ is higher than the one needed to

trim the aircraft at its new velocity, the aircraft climb angle γ increases, which is not desired. The u and

theta states are not independent from each other in the aircraft dynamics. The pitch angle reference

θref should be adjusted when a uref is requested to prevent the aircraft climbing. When the negative

step is given in handle 1, at t = 4 s, the aircraft easily retrieves to its initial condition. In both steps, the

system takes less than 1 s to stabilize at a steady state condition and the pitch angle error is less than

1◦. These two parameters fulfil the stated requirements.

Figure 5.5: Step in handle 1 during Level flight (simulation visualization)
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Figure 5.6: Step in handle 1 during Level flight
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Step in Handle 2

In this case, at t = 1 s a step input is given in handle 2 which produces a pitch angle step request

θref . In response, the elevon signal δE increases in magnitude and the pitch angle θ quickly achieves

the reference value with less than 1◦ of pitch angle error and just a light overshoot. The throttle signal

δT responds with a small decrease and results in an aircraft u velocity reduction that was not requested

and should be fixed. As intended, the aircraft climb velocity γ increases and the aircraft starts gaining

altitude. At t = 4 s a negative step is given in handle 2 and the aircraft goes back to its initial condition.

Note that a big impulse happens in the elevon signal δE which results in a big loss in the pitch angle.

Because this impulse is quickly compensated and it results in almost no altitude loss, this is considered

to be acceptable.

Figure 5.7: Step in handle 2 during Level flight (simulation visualization)
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Figure 5.8: Step in handle 2 during Level flight
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5.1.3 Transitions

Transition

In this simulation the aircraft is initialized in hover trim conditions, facing the North direction, above

the ground. Flight Mode Switch starts in position 0 i.e. Hover mode, and Take-Off/Land Switch starts in

position 1 i.e. Take-Off mode.

At t = 1 s the Mode Selector Switch is shifted and the Transition begins. The velocity and pitch angle

references, uref and θref , are not expected to be precisely followed, so the errors in the references

tracking during the maneuver are accepted. The aircraft is able to perform the transition in 3 s with no

oscillations or overshoot. This is possible due to the implementation of the anti-windup technique which

allows the aircraft not to destabilize, besides of the actuator saturation of the throttle signal δT . During

this maneuver, the aircraft gains about 2.5 m in altitude, which is considered to be acceptable, and takes

less then 10 m in the north direction to reach the Level flight condition.

Figure 5.9: Transition from Hover to Level flight (simulation visualization)
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Figure 5.10: Transition from Hover to Level flight
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Back Transition

In this simulation the aircraft is initialized in level trim conditions, facing the North direction, above

the ground. Flight Mode Switch starts in position 1 i.e. Level mode, and Take-Off/Land Switch starts in

position 1 i.e. Take-Off mode.

At t = 1 s the Mode Selector Switch is shifted and the Back Transition begins. The big step in the

attitude request θref immediately saturates the elevon signal δE until almost the end of the maneuver.

The velocity reference uref makes the throttle signal δT also saturate as intended to increase the elevons’

authority during the maneuver. By the end of the Back Transition, the pitch angle θ is at the hover trim

condition, but the u velocity is much higher, about 5 m/s. The Hover controller quickly decreases this

value to the desired velocity. As explained before, the actuators’ saturation did not destabilized the

aircraft since an anti-windup technique is implemented. Finally, the aircraft is capable of performing the

back transition in less than 3 seconds which is within the previously defined requirements’ limits.

Figure 5.11: Back transition from Level to Hover flight (simulation visualization)
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Figure 5.12: Back Transition from Level to Hover flight
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5.1.4 Take-Off and Landing

In this simulation the aircraft is initialized in hover trim conditions, facing the North direction, touching

the ground. Flight Mode Switch starts in position 0 i.e. Hover mode, and Take-Off/Land Switch starts in

position 0 i.e. Landing mode.

At t = 1 s the Take-Off/Land Switch is shifted and the altitude controller is activated with an altitude

reference of href = 1 m. This controller produces a change in the velocity reference uref based on

the altitude error while the pitch angle reference θref remains constant. When the aircraft reaches the

reference altitude, the altitude controller is turned off. At t = 6 s the Take-Off/Land Switch is shifted again

and the altitude controller is activated with an altitude reference of href = 0.2 m. This landing altitude

reference value is chosen to avoid the aircraft crashing into the ground. The aircraft CG is located at

dx = 0.13 m and so there is some space for sensor or control errors. Note that, as intended, the aircraft

smoothly reaches the reference altitude with no overshoots.

Figure 5.13: Take-Off and Land (simulation visualization)

71



Figure 5.14: Take-Off and Land
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5.2 Simulation Flight Mission

With all the controller blocks tested and the key flight phases analysed, the two minimum flight mis-

sions, described in 3.1, are run in the simulator. The states are simulated without noise and in no wind

conditions. Both missions are initialized in hover trim conditions, facing the North direction, touching

the ground. Flight Mode Switch starts in position 0 i.e. Hover mode, and Take-Off/Land Switch starts

also in position 0 i.e. Land mode. Because each individual flight phase was already analysed, during

this section, only some additional observations about the evolution of the different state requests and

controller modes are made.

5.2.1 Mission 1

In the first mission, a Take-Off is commanded at t = 1 s and, at t = 3 s, when the aircraft is already

at the take-off altitude reference, an unitary handle 1 signal is applied making the aircraft move forward

with a vertical attitude, during 5 s. Then, the handle 1 signal is set to zero again and, at t = 9 s, the

Landing is commanded. During the first two phases of this mission (take-off and step in handle 1), the

aircraft behaves as analysed individually in the previous section. Then, when the negative handle 1

step input is given, the aircraft starts to stabilize in Hover position but the Landing command is given

before it reaches steady-state condition. Although the aircraft starts landing in an unsteady condition,

the controller is capable of stabilizing the aircraft during this flight phase. Lastly, the aircraft smoothly

touches the ground and the simulated mission is considered to be succeeded.

Figure 5.15: Mission 1 (simulation visualization)
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Figure 5.16: Mission 1
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5.2.2 Mission 2

In the second mission, a Take-Off is commanded at t = 1 s and, at t = 3 s the Transition is requested,

which develops as described in the transition analysis. At t = 6 s the stable level flight is achieved. After

1 second in Level mode, the Back Transition is also requested which ends in Hover flight at t = 10 s.

After 2 s in this steady position, the Landing mode is activated, beginning at an altitude of 16 m, the

aircraft takes almost 8 s to touch the ground.

The flight control system proved not only that each individual mode controller worked properly but

also that the overall controller structure was able to change smoothly between flight phases.

Figure 5.17: Mission 2 (simulation visualization)
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Figure 5.18: Mission 2
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Chapter 6

Conclusions

6.1 Summary

This work detailed the design and simulation of the flight control system capable of performing au-

tonomous take-off, landing and transition between flight modes of a particular tail-sitter UAV. The re-

search undertaken was separated into three main tasks. First, it was developed a complete dynamic

model of the chosen platform, which was implemented in a Matlab/Simulink simulator. Secondly, the

understanding of the aircraft behaviour around the main operating points was studied based on lin-

earization analysis techniques. Then, the definition of the aircraft flight envelope was useful to establish

its operation limits. Finally, the longitudinal flight controller based on linear control techniques was de-

veloped and tested in several simulations. The main conclusion and achievements of this work are

presented below, as well as some suggestions for future works that can be developed from this work.

6.2 Observations

The observations and comments made in this section cover the objectives stated for this dissertation:

• As proposed, a complete nonlinear model of the aircraft was implemented and describes the plat-

form behaviour at an adequate level for a first iteration of the controller design. However, some ex-

perimental validation must be done and inaccuracies must be identified and corrected. One should

remember that no sensors were modeled and, therefore, the real-time simulator implemented uses

the direct state variables with no noise added which represents an unrealistic simulation.

• The longitudinal characterization and analysis proved to be extremely relevant in understanding the

aircraft stability and differences between the two main flight operating modes. This comprehension

enabled a better insight of aircraft control needs, which then, in the controller design, allowed a

faster selection of LQR weightings and controller parameters.

• About the control design and structure, the choice of using linear control techniques proved to be

feasible even against the challenges related to the aircraft unstable configuration in vertical flights

and its poor performance in aerodynamic flights.

77



• Evaluating the simulations results, overall, the objectives were met. However, there is much room

for improvement in most of the flight phases and reference tracking. The most critical cases are:

the forward and backwards movement in Hover, since the altitude gain should be reduced and the

time response could be smaller. During Level flight, when a velocity request is given, the aircraft

does not maintain the level flight and starts climbing which should be corrected. The Transition was

performed reasonably well, yet a smaller distance and altitude gain should be attempted. The Back

Transition simulation demonstrated that the aircraft is easily capable of executing this maneuver.

However, it revealed a big altitude gain which must be reduced. About autonomous Take-Off and

Land, the altitude controller showed good results as the aircraft was able to track the references

as intended.

• To conclude the controller testing, the two minimum flight missions that included all the critical

phases of interest for this work were successfully completed in simulation. Therefore, it proved

not only that each individual mode controller worked properly but also that the overall controller

structure worked well and that it was able to change smoothly between flight phases.

6.3 Future Work

Base on the observations and conclusions of this work, some suggestions for future works on this

platform control study are presented below:

• A model verification and more accurate parameter estimation should be done with real world test-

ing. An accurate model simulator and a reliable platform for controller design, verification and

validation are crucial for future control optimization.

• In order to make real experimental flights, sensors should be select and added to the aircraft

platform. Therefore, they should be also modelled and included in the simulator.

• With the purpose of introducing more realism to simulations, a wind model could also be added,

and controller analysis should be done in the presence of wind disturbances.

• To improve the aircraft weak performances detailed above, one feasible solution to be analysed is

to add the altitude state in the LQR feedback controller, which could prevent altitude gains when

they are not desired.
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Appendix A

X-Vert Parameters

This appendix resumes the X-Vert parameters gathered from different references.

Table A.1: Aircraft Body Parameters, values from [16].

Parameter Symbol Value Unit

Mass m 0.21 kg

Ix 3.002 · 10−3 kg m2

Moments of Inertia Iy 6.245 · 10−4 kg m2

Iz 3.538 · 10−3 kg m2

Non-zero Products of Inertia Ixz −14.03 · 10−6 kg m2

CG Position from Trailing Edge dx 130 mm

The position of the CG in the geometric frame FG is:

rCG = [ dx , 0 , 0 ]
′ (A.1)

Table A.2: Thruster Parameters, values from [16].

Parameter Symbol Value Unit

Battery Voltage Vbatt 7.4 V

Thruster Rotational Inertia Ith 1.626 · 10−6 kg m

Propeller Radius rp 62.5 mm

xp,G 173 mm

Propeller Position yp,G 145 mm

zp,G 0 mm

The position of the right propeller in the geometric frame FG is:

rprop,G = [ xp,G , yp,G , zp,G ]′ (A.2)
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The left propeller has a negative y coordinate. The propellers position in the body frame FB is:

rprop = rprop,G − rCG (A.3)

Table A.3: Electric Motor Parameters, values from [32].

Parameter Symbol Value Unit

Inductance Lm 3.6 · 10−4 H

Resistance Rm 0.032 Ω

Back-electromotive Force Ke 9.68 · 10−2 V/(rad/s)

Rotational Inertia Jm 1.4 · 10−5 kg m2

Torque Constant Kt 2.47 · 10−2 (N m)/ A

Damping Constant Bm 2.9 · 10−4 (N m s)/ rad

Table A.4: Wing Geometric Parameters, values from [16].

Parameter Symbol Value Unit

Wing Area S 0.0798 m2

Wing Span b 0.5 m

Mean Aerodynamic Chord c̄ 0.16 m

Wing Aspect Ratio AR 3.13 -

Delta Wing Sweep Angle Λ 19.8 deg

The mean aerodynamic chord is:

c̄ = S/b (A.4)

The wing aspect ratio is:

AR = b2/S (A.5)

Table A.5: Aerodynamic Parameters, values from [16].

Parameter Symbol Value Unit

cx 9.91 · 10−4 m3/rad

Control Derivative Coefficients cy 4.74 · 10−4 m3/rad

bx 9.37 · 10−4 m3/rad

by 3.48 · 10−4 m3/rad

Maximum Elevons Deflection δmax 39 deg

Skin Friction Coefficient CD,0 0.02

Oswald’s Efficiency Factor k0 0.87
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Figure A.1: Flying Wing Dimensions

The half wing lateral position is given by:

ytrapeze =
y△S△ + y

□
S

□

S△ + S
□

(A.6)

Table A.6: Aerodynamics coefficients, values from [11].

CLα̇
0 CLq

3.1851 - -

Cmα̇ −0.4897 Cmq −2.4487 - -

CYβ
−0.0024922 CYp 0.26198 CYr −0.06725

Clβ −0.16039 Clp −0.45055 Clr 0.31074

Cnβ
0.03903 Cmp

−0.18904 Cnr
0.0028225

Table A.7: Coordinates of Reference Points for Contact Force Calculations, given in the geometric refer-
ence frame G, in meters.

xk,G yk,G zk,G

−0.110 −0.251 0.071

−0.110 −0.251 −0.071

−0.110 0.251 0.071

−0.110 0.251 −0.071
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Appendix B

Quaternions

In this appendix, all the following definitions and relations are according to [18], [33] and [34].

B.1 Definition

A quaternion is a four elements number used in three-dimensional rotations and orientations. A

quaternion number is represented in the form:

q = q0 + q1i+ q2j + q3k = q0 + qTv


i

j

k


where i, j, k are unit imaginary numbers. As shown, it is composed by a scalar part q0 and a vector

part qv, which may be thought of as a rotation of an angle Θ about a three-dimensional unit vector u.

q =

 cos(Θ/2)

u sin(Θ/2)


Furthermore, when a quaternion is used to represent a rotation, it is required that to be a unit quater-

nion, which meas the Euclidean norm of the quaternion must be 1 at all time:

∥q∥ =
√
q20 + q21 + q22 + q23 = 1

Also, a quaternion q is mostly represented as a 4-dimensional vector:

q =

 q0

qv

 =


q0

q1

q2

q3
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B.1.1 Quaternion Product

The quaternion product ⊗ of two quaternions p and q represents the rotation by p followed by a

rotation by q and is defined as:

p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0

 (B.1)

Quaternions obey the normal laws of algebra, except that multiplication is not commutative, which

means:

p⊗ q ̸≡ q ⊗ p

During the computational implementation it is used the Matlab function quatprod = quatmultiply(p,q)

to compute the quaternion product.

B.2 Conversion between Euler Angles and Quaternions

In simulation and control, it is often desired to keep track of a certain attitude. Due to Euler angles

simpler interpretation, to initialize a quaternion usually it is easier to convert it from an Euler attitude

representation. Directly, the quaternion can be obtained from standard roll-pitch-yaw (ϕ, θ, ψ) Euler

angles as:

q0 = cos
ψ

2
cos

θ

2
cos

ϕ

2
+ sin

ψ

2
sin

θ

2
sin

ϕ

2

q1 = cos
ψ

2
cos

θ

2
sin

ϕ

2
− sin

ψ

2
sin

θ

2
cos

ϕ

2

q2 = cos
ψ

2
sin

θ

2
cos

ϕ

2
+ sin

ψ

2
cos

θ

2
sin

ϕ

2

q3 = sin
ψ

2
cos

θ

2
cos

ϕ

2
− cos

ψ

2
sin

θ

2
sin

ϕ

2

(B.2)

On the other hand, although not explicitly necessary for simulation purposes, Euler angles can be

retrieved from unit quaternion as:

ϕ = atan 2
(
2q2q3 + 2q0q1, q

2
3 − q22 − q21 + q20

)
θ = asin (2q0q2 − 2q1q3)

ψ = atan 2
(
2q1q2 + 2q0q3, q

2
0 + q21 − q22 − q23

) (B.3)

During the computational implementation there are used the Matlab functions eul2quat and quat2eul

for the specified conversions. Nevertheless, as explained in the previous section, the quaternion multi-

plication is not commutative. The ’ZYX’ sequence is already the default sequence and there is no need

to specified as a parameter of the Matlab function.
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B.2.1 Euler pitch angle in hover

Although the quaternion formulation provides more computationally efficient and lack of singularity

problems, because of quaternion unitary constraint (quaternion Euclidean norm must be 1) their effect is

highly non-linear. A quaternion increasing from 0.9 to 1.0 may represent a much larger change in angle

than an increase from 0.0 to 0.1. Thence, for linear control purposes quaternions will deliver inconsistent

results and Euler angle representation should be used. However, because the tail-sitter configuration

includes the discontinuity point in its flight envelop, a way of contouring this issue about the vertical

position should be deduced.

Therefore, if one considers a pure longitudinal movement (ϕ = ψ = 0), converting Euler to quater-

nions gives qv and, in the hovering condition (com θ0 = π/2) it equals to qv0, as in the following expres-

sions.

qv =


cos(θ/2)

0

sin(θ/2)

0

 and qv0 =



√
2/2

0
√
2/2

0


Linearization around this condition gives:

δqv = qv − qv0 =
∂qv
∂θ

δθ =
1

2


− sin (θ0/2)

0

cos (θ0/2)

0

 δθ =
1

2


−
√
2/2

0
√
2/2

0

 δθ

From q2, δθ can be obtained continuously:

δθ = 2
√
2

(
q2 −

√
2

2

)
(B.4)

valid for θ close to π/2. It is defined as the linear zone, in other words, the limits for the applications of

this linearisation, only small variations around θv0 = π/2 that allows an error of less than 1◦ during the

conversion.

θv = θv0 + δθv → q(ψ, θv, ϕ) → δθ

error = δθv − δθ

Consequently, δθv ∈ [−15, 15]
◦.

B.3 Conversion between Quaternion and Euler angles derivatives

In order to obtain a linearized decoupled mathematical model, the quaternion derivatives from the

systems dynamics are converted to Euler angles derivatives making use of the following transformation:
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ϕ̇

θ̇

ψ̇

 = T Φ̇
q̇


q̇0

q̇1

q̇2

q̇3

 (B.5)

where T Φ̇
q̇ is the transformation matrix from quaternion derivatives to Euler angles derivatives. Since this

transformation is not easy to directly deduce, two sequential transformations are applied:

T Φ̇
q̇ = T Φ̇

ω Tωq̇ (B.6)

First, the quaternion derivatives are converted into angular rates using Tωq̇ , and then the angular

rates are converted into Euler angles derivatives using T Φ̇
ω .

T Φ̇
ω =


1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

 Tωq̇ = 2


−q1 q0 q3 q2

−q2 −q3 q0 q1

−q3 −q2 −q1 −q0

 (B.7)
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