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Resumo
Com as alterações climáticas, as condições meteorológicas de incêndio estão a tornar-se mais comuns em
várias regiões domundo. Em resultado, em combinação com as transformações sociais, os incêndios rurais
estão a aumentar em frequência e intensidade, podendo resultar em grandes incêndios que excedem a
capacidade de resposta operacional das equipas de emergência e criando condições extremas que colocam
em risco as populações. A crescente dificuldade em lidar com estes fenómenos evidenciou várias lacunas
nas infraestruturas de resposta a desastres, que exigem canais aprimorados de recolha de informações.
Neste contexto, o interesse pela utilização de veículos aéreos não-tripulados (VANTs) para vigilância e
monitorização ativa de incêndios tem aumentado nos últimos anos.
Esta tese propõe soluções inovadoras para sistemas descentralizados de monitorização ambiental para
detecção e monitorização de incêndios rurais, baseados em redes de robôs aéreos que podem fornecer
informações em tempo-real, através da utilização de robótica cooperativa, detecção remota e inteligência
artificial. O sistema combina sensores estáticos, junto ao solo, e dinâmicos a bordo de plataformas robóti-
cas aéreas, como drones e balões de alta-altitude que permitem agregar várias camadas de observação.
A natureza descentralizada, multimodal e dinâmica do sistema proposto permite o seu accionamento em
regiões específicas em períodos em que existem previsões de elevado risco de incêndio.
Para abordar os desafios de engenharia de sistemas ciber-físicos tão complexos, esta tese segue uma per-
spectiva de engenharia de sistemas, enquadrando a investigação particularmente numa abordagem como
sistema de sistemas. As contribuições desta tese têm quatro partes. Primeiramente, a investigação foca-
se na otimização do dimensionamento e projeto de configurações de frotas heterogéneas de VANTs, bem
como em estratégias de coordenação cooperativa para redes multi-VANT resilientes. Em segundo lugar,
realiza-se um estudo aprofundado para avaliar câmaras térmicas de infravermelhos e as suas capacidades
complementares às câmaras do espectro visível para percepção robótica multimodal. Nesse âmbito, novos
conjuntos de dados multimodais e abordagens de modelação de dados para detecção de incêndios rurais
são propostas com base em dados de ensaios laboratoriais e de campo. Em terceiro lugar, desenvolvem-se
abordagens de sensores inteligentes derivados de dados para detecção emonitorização de incêndios a par-
tir de imagens térmicas e visíveis, usando modelos de lógica difusa e redes neuronais profundas baseados
em métodos de aprendizagem automática. Em quarto lugar, são apresentadas abordagens de curadoria
de dados para anotar dados de imagens de incêndio para abordar as lacunas em conjuntos de dados de
elevada qualidade, que são essenciais para escalar essas soluções para implementações no mundo real.

Palavras-chave: sistemas inteligentes, incêndios rurais, deteção e monitorização de fogo, redes de
sensores descentralizadas, percepção robótica multimodal, sistemas multi-agente
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Abstract
With climate change, fire weather conditions are becoming more frequent in several regions worldwide.
As a result, in combination with societal transformations, rural fires are increasing in frequency and in-
tensity, which can result in large fire events that exceed the operational response capacity of emergency
teams and create extreme conditions that endanger populations. The increased difficulty in addressing
these phenomena has highlighted several hindrances in the disaster response infrastructure that call for
enhanced intelligence gathering pipelines. In this context, the interest in the use of unmanned aerial vehi-
cles (UAVs) for surveillance and active fire monitoring has been growing in recent years.
This thesis proposes novel solutions for decentralized environmental monitoring systems for wildfire de-
tection and monitoring based on networks of aerial robots that can provide enhanced real-time wildfire
intelligence by leveraging cooperative robotics, remote sensing and artificial intelligence. The system com-
bines static sensors on the ground and dynamic sensors onboard mobile aerial platforms, e.g., drones and
high-altitude balloons, that enable aggregating several observation layers. The decentralized, multimodal
and dynamic nature of the system proposed enables its deployment target regions in periods when there
are forecasts of increased fire risk.
To address the challenges of engineering such complex cyber-physical systems, this thesis follows a sys-
tems engineering perspective, framing the research particularly in a system of systems approach lever-
aging multi-agent systems and intelligent systems methods. The contributions of this thesis are fourfold.
First, the research focuses on optimization of the dimensioning and design of configurations of heteroge-
neous fleets of UAVs, as well as on cooperative coordination strategies for resilient multi-UAV networks.
Second, an in-depth study is undertaken to assess thermal infrared cameras and their complementary ca-
pabilities to visible spectrum cameras for multimodal robotic perception. In this scope, new multimodal
datasets and novel data modeling approaches for wildfire detection are proposed based on extensive lab-
oratory and field trial experiments. Third, solutions are developed for data-driven intelligent sensors for
fire detection andmonitoring for thermal and visible images using fuzzy models and deep neural networks
based on machine learning methods. Fourth, data curation approaches for annotating fire image data are
presented to address the gaps in high-quality datasets, which are essential for scaling these solutions to
real-world deployments.

Keywords: intelligent systems, wildfires, fire detection and monitoring, decentralized sensor networks,
multimodal robotic perception, multi-agent systems
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I | Introduction

Contents
1 Wildfire Intelligence 3

2 Cyber-Physical Systems 11

3 Proposed Approach 25

4 Contributions 35

Summary
The introduction of this thesis comprises two distinct chapters, the first regarding the
essential motivation of this work, and the second covering the fundamental principles
of the proposed approach. Chapter 1 opens by presenting the current and emergent
societal challenges in facing wildfire events under the ongoing climate crisis. Then, fol-
lows the demand for enhanced fire intelligence systems and description of current Earth
Observation solutions. Chapter 2 introduces the background on cyber-physical systems
employed for designing environmental monitoring networks, starting by describing con-
cepts from systems engineering, systems of systems, and multi-agent systems. Chapter
3 - Proposed Approach presents the overview of the proposed architecture to devise de-
centralized multi-robot networks for wildfire detection and monitoring. Then, the thesis
scope and contributions are presented in Chapter 4 - Contributions, along with an outline
of the structure of this work.
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1 | Wildfire
Intelligence

Contents
1.1 Fire Hazard, Risk and Effects 4
1.2 Decision Support Systems for Wildfire Management 7
1.3 Environmental Monitoring for Wildfire Intelligence 8

In this introductory chapter, we start by framing the challenges related to fire hazard in
the context of the ongoing climate crisis and present an overview of the present tech-
nological infrastructure for fire preparedness and response. Then, follows a description
of the state-of-the-art environmental monitoring solutions available for fire-relevant ob-
servations, along with its respective advantages, drawbacks and limitations that allow
the identification of the current gaps in fire intelligence that guide the motivation of the
proposed approach.
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1.1 Fire Hazard, Risk and Effects
Fire is an essential process in Earth System dynamics that shapes ecosystems and landscapes worldwide.
This complex phenomenon depends on climate, vegetation and land-cover [1], being closely tied to the
natural dynamic equilibria between recurrent ecosystem cycles that influence the characteristics of fire
regimes, leading specific regions to be inherently more susceptible to fire occurrences [2].
The drivers of wildfire occurrences can be divided into twomain categories: natural and anthropogenic [3].
Natural drivers include the climate, vegetation, weather conditions and topography, whereas anthro-
pogenic factors include human-induced ignitions, land use practices and also fire management policies [4].
While some of these drivers are structural and make certain geographic regions across the globe more fire-
prone, they vary as a result of human activities over time [5]. The interplay between these various drivers
makes wildfire a very complex phenomenon, ever-changing and without a universal solution, requiring
multifaceted approaches adapted to local characteristics.
In this introductory section, we start by outlining some grounding concepts [6] used to explain the moti-
vation and specificities related to wildfire applications, before delving into the technological and scientific
aspects pertaining to this research.

Fire hazard: Represents the intensity with which an area is likely to burn in case of a fire occurrence

based on the fuel structure and topography that influences potential fire behavior, without regard to

the state of weather-related variables.

Fire danger: The combination of both constant and variable factors of the fire environment that

determine the ease of ignition, rate of spread, difficulty of controlling a wildfire, and fire impacts.

Fire risk: Probability resulting from the combination of the likelihood of a fire occurring and the

potential impacts of that fire.

Fire regime: Pattern of natural or human-caused fire activity that characterizes a given area, e.g., the

frequency or fire interval, extension of the fire season, and the number, type, and intensity of fires.

The climate type is a structural driver in defining the ability of a given region to carry fire and the inherent
productivity of wildfire occurrences [7]. As illustrated in Fig. 1.1a, the tropics and temperate regions have
the combination of two important factors: temperature and vegetation. In contrast, desert and artic re-
gions, due to the low vegetation or the temperatures encountered, are less prone to fire events. In addition,
as depicted in Fig. 1.1b, high-mesic regions with high moisture levels and, conversely, low-arid regions
with low moisture levels limit the productivity gradient of fire occurrences. These contrasts translate a
key relation concerning fire hazard in the sense that either climate limiting or fuel limiting factors influence
the potential effects of fire occurrences, making for a wide diversity of fire regimes worldwide. For each
region, the fire regime also has a vital role in regulating natural ecosystems and biodiversity, and shaping
landscapes by preventing fuel load accumulation, controlling invasive species and improving soils [8].
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Figure 1.1: Qualitative schema relating climate-related drivers of fire occurrences.

Although fire depends on the confluence of fuel, oxygen, and heat, most ignitions are anthropogenic
in nature, driven by accidental, negligent, and intentional human activities that make fire-prone regions
increasingly vulnerable on environmental and societal levels. In addition, besides human intervention as
an ignition source, fire exclusion practices with prominent fire suppression and fine fuel accumulation
result in human-altered fire regimes [9], in which extreme weather events can lead to natural disasters
with fires reaching intensity levels that can no longer be directly suppressed or controlled, threatening
environmental resilience and posing tremendous risks for populations at the wildland-urban interface [10].

Wildfires and Climate Change

Due to climate change, natural fuels are dryer and fire weather conditions more frequent, which increases
ignition propensity, extends fire seasons [11] and causes fire events to be more frequent, intense and
severe [12]. With the escalation of these phenomena, fire science and fire management are central for
the understanding of these phenomena and addressing the risks and effects posed by these events.
With climate change the probability of occurrence of extreme conditions increases as can be observed in
Fig. 1.2 that presents an illustrative diagram showcasing the implications of increase in mean temperature
and/or of variance (the combination of both effects is also possible). In these scenarios, the increase in
average temperature can lead to the increase in number of days with adverse weather in both cold and
hot extremes. For wildfires occurrences, the increase in more hot weather days and more extreme hot
weather days can create conditions of very high ignition propensity, in which the occurrence of a fire can
quickly escalate to large proportions.
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Figure 1.2: Diagram with possible effects on climate extremes. Adapted from [11].
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In that sense, it is important to provide an example of the fire activity trends in Portugal, which is a re-
gion with high susceptibility to fires given its temperate climate with areas featuring abundant vegetation.
In Fig. 1.3, we showcase the historical data collected by ADAI of the past wildfire occurrences recorded
on a yearly basis and the respective total area burned per year, as well as the records of the five largest
wildfire events per year.
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Figure 1.3: Historical wildfire trends in Portugal. Featured data courtesy of ADAI [13].

Analyzing the fire trends over the last decades in Portugal, in Fig. 1.3a, it is possible to observe that there is
a steep rise in the period between 1970 and 1990, afterwhich the total number ofwildfire occurrences per
year has stabilized. Although this evolution denotes the improvement in wildfire record systems, this also
reflects the profound socioeconomic transformations over that period that have seen the abandonment
of rural regions in favor of urban counterparts, leading also to the widespread halt of areas of the primary
sector, e.g., agriculture, forestry, as well as pastoral and livestock activities [14]. In turn, forested areas
proliferated undermanaged thereafter, having increased long-term natural fuels accumulation [15].
In addition, as fire suppression strategies have become highly effective in an initial response stage, even
small fires that do not present significant danger are extinguished early on. This has led to fire exclusion
in territories where low intensity wildfires would have been fundamental to regulate ecosystem cycles
and manage fuel accumulation over time, and thereby preventing greater risks and impacts associated
with higher fuel loads. Moreover, the nonexistence of land-use by primary activities surrounding villages
brings unmanaged forests to the boundary of the wildland-urban interface, therefore putting populations
in close danger. These risks are most troubling given the lacking infrastructure for response in rural areas.
With these human-driven changes, while the number of fires has maintained stable, the structural factors
for wildfires to potentially be larger have increased gradually season after season, with the natural cycles in
vegetation growth in precipitation periods, and the drying of fine fuels in heatwaves and drought spells. As
a result, when fire weather conditions are present the potential impacts of an ignition can be much larger.
This can be observed in Fig. 1.3b, which shows the largest wildfire events for each year, and demonstrates
that the magnitude of fires in terms of burned area has been rising, particularly since 2003.
Notwithstanding, it is important to also note that the vast majority of fire ignitions are from causes directly
related to the human presence and activities, namely by negligence or through risk behaviors in the use
of fire in rural spaces that precipitate the occurrence of wildfires.
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1.2 Decision Support Systems for Wildfire Management
Wildfire phenomena affect disproportionately communities that are underserved by a societal unjust val-
orization of ecosystems services and inadequate land management and land-use policies, which make
these communities more susceptible and vulnerable to these events. While preparedness and response
improvements can help minimize its impacts, the dire effects are endured by communities far beyond the
timescale of a fire event.
While acknowledging that despite the high spatial and temporal uncertainty of these events, it is an ex-
pected and necessary phenomena. In that sense, it is crucial to stress the urgency in improving wildfire
management across its multiple vectors: i) prevention, ii) preparedness, iii) response and iv) recovery.
To that end, enhanced fire intelligence plays a pivotal role through the emergence of advanced technolo-
gies for mapping and real-time monitoring purposes, allowing its incorporation in the decision chains both
in risk mitigation policies and prevention actions, improved early-warning and real-time monitoring ser-
vices, as well as informed recovery planning for building resilient communities.
The advent of new advanced environmental monitoring paradigms can contribute to the several stages of
wildfire management, namely in the tasks outlined in Fig. 1.4.
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environmental conditions;

§ risk mapping based on
land-use and social patterns;

§ post-event analyses, e.g., 
burned area mapping,

§ evaluation of cascading 
effects, e.g., erosion risks 
and air-quality estimation;

§ vegetation management to 
reduce fire severity such as:
fuel mapping, or tracking of 
vegetation fuel moisture 
content.

§ wildfire detection and monitoring, 
e.g., early identification of flames
and smoke plume, mapping of the 
fire front(s), detection of spot fires 
and identification of hot spots; 

Figure 1.4: Wildfire management stages: prevention, preparedness, response and recovery.
This thesis focuses on the response stage, more specifically in the wildfire detection and monitoring tasks.
In this scope, the topic of study centers on addressing the real-time intelligence gathering in the contexts
of early detection, active fire monitoring and detection of hotspots. As will be discussed in the next
sections, these areas have significant infrastructure and technological gaps that can be unlocked by the
new emerging technologies like autonomous robotics and artificial intelligence.
Given the increased urgency for enhanced fire intelligence to tame the dire impacts of these events,
this thesis proposes novel environmental monitoring solutions capable of providing systematic obser-
vations that can deliver real-time data to decision-makers, civil protection agencies and emergency re-
sponse teams.
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1.3 Environmental Monitoring for Wildfire Intelligence

1.3.1 Environmental monitoring challenges

With wildfires becoming more frequent and severe worldwide, fire monitoring systems face significant
difficulties as existing solutions have important limitations in providing comprehensive situational aware-
ness. While ground- based sensors can provide real-time data [16], their area coverage is very limited and
infrastructure-wise very expensive to scale to provide wide situational intelligence. In turn, low-altitude
unmanned aerial vehicles (UAVs) provide increased flexibility because of their high mobility, but due to
their very inefficient flight endurance [17], missions can also only provide localized situational awareness.
On a broader scale, satellites in low-earth orbit provide considerable intelligence value and are widely
used to inform emergency response teams and civil protection agencies [18], however despite providing
a global area coverage its time coverage is extremely limited, providing a limited number of observations
from different satellite sources as illustrated in Fig. 1.5.
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Figure 1.5: Current EO capabilities for active fire monitoring from low-earth-orbiting satellite ob-servations from instruments such as SLSTR (Sentinel-3a/b), MODIS (TERRA/AQUA), and VIIRS(NPP/JPSS) fail to observe wildfires during the most active portions of the day (Adapted from [18]).

Given these challenges, high-altitude pseudo satellites (HAPS) can complement these alternative modal-
ities and leverage their characteristics to tackle several of the current gaps [19], namely by providing a
very wide area coverage by operating in the stratosphere at about 20km altitude, bringing benefits in the
spatial resolution of imagery but also to its time-resolution as these communications can be performed in
real-time. Notably, the former Loon company had implemented large-scale balloon-borne infrastructure
for communications provisioning [20].
In this context, the advances in artificial intelligence (AI) can be an enabling technology for situational
awareness and decision support systems. Recent works have proposed AI solutions for image-based fire
detection tasks, however the quality and limited size of image databases available limit reliability for de-
ployments in real contexts. Although transfer learning and data augmentation techniques have been ex-
plored, the lack of large-scale databases for wildfire detection tasks is a known hurdle in developing AI
algorithms with suitable generalization, hindering its reliability.
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1.3.2 Earth Observation solutions

The evolution of remote sensing technologies led to the development ofmonitoring systems using satellite-
based information to forecast fire hazard and allow risk assessment, e.g., European Forest Fire Information
System (EFFIS), European Centre for Medium-Range Weather Forecasts (ECMWF). Nevertheless, while
providing wide coverage, the latency and resolution of current satellite solutions is still a roadblock for an
application as time-sensitive as wildfire detection.
To mitigate this, aerial systems can provide local coverage with high spatial and temporal resolution, in
areas identified as being of risk. Currently a large stake of aerial surveillance missions is performed with
piloted aircraft, but the expensive and dangerous nature of this type of operationmake this solution unfea-
sible to scale. Alternatives are unmanned aerial vehicles (UAVs), such as multi-rotors, fixed-wing aircraft
or airships used individually or cooperatively. High-altitude balloons are low-cost platforms that can go
as high as the stratosphere and provide wider aerial coverage being however wind-driven.
Image-based sensors are widely used for wildfire detection with visible range, thermal and multispectral
technologies. Solutions increasingly combine computer vision and intelligent systems, including neural
networks, fuzzy clustering, or support vector machines, but are largely limited to a single sensor type.
Thermal-based approaches are currently understudied, but have remarkable potential for this application,
having renewed interest due to the decrease in equipment costs and weight/size ratio. In turn, methods
applied to sensors networks monitor environmental variables, e.g., temperature, humidity, and/or gas
levels, which are complementary to information from image-based sensors.
However, with ever-increasing data streams, centralized systems are unable to handle the torrent of in-
formation from numerous sources. This requires networks to be designed following decentralized or dis-
tributed approaches, and that estimation and inference algorithms comply with these paradigms.
Despite extensive research on this topic, its complexity is typically avoided with domain-specific ap-
proaches that are designed for single data types, often reporting high false alarm rates, which hinders
its application in real-world contexts.
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To bridge the gap between the need for real-time data with high spatiotemporal resolu-
tion in specific areas and the current Earth Observation monitoring systems, this work
proposes a novel integrated networked system architecture for wildfire detection and
monitoring. The dynamic system combines static sensors on the ground and dynamic
sensors onboard mobile aerial platforms e.g. drones and high-altitude balloons, that
can be deployed to monitor areas of high risk, based on satellite data or on-demand
requests. The system relays real-time data for decision-making, enabling enhanced
situational-awareness for decision and operational support, e.g. with respect to early
warnings and optimization of resource allocation.

This chapter focuses on introducing the background principles and methods used in this
thesis for modeling networked cyber-physical systems. It starts by outlining the systems
engineering approach employed for the high-level modeling of the proposed networked
architecture, which enables a holistic understanding of how this system is designed and
the interactions between its several layers. Then, being a networked system composed
of numerous entities, the model naturally evolves to a system of systems framework that
can leverage multi-agent systems concepts for coordination and cooperation, as well as
intelligent systems approaches for optimization and robotic perception.
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The study of dynamical systems has continuously aimed to formulate simple, powerful abstractions to
model systems by describing its characteristics through establishing relations between its inputs and out-
puts. This notion has enabled the development of extensive mathematical methods that are the foun-
dations of system modeling that have permeated many engineering disciplines. However, to address in-
creasingly demanding requirements, engineering systems are progressivelymore complex, often calling for
contributions from different fields of expertise. In that sense, the discipline of systems engineering has
gained prominence over the last decades for addressing the holistic development of complex problem-
oriented systems [21]. In this context, this approach is widely used to model cyber-physical systems, a
type of systems designed to leverage computing to interact with the physical environment.
In this work, the backbone of the proposed architecture is a systems engineering perspective, which will
provide a template for the system concept, as well as render a roadmap for the structure of this document.
For this reason, the following sections aim to describe the objectives and principles of this approach, which
are followed by the introduction to the frameworks of system of systems and multi-agent systems, also
cornerstones of the intelligent networks proposed.

2.1 Systems Engineering
Systems engineering is a branch of engineering centered on methodical, multidisciplinary approaches for
the holistic design, realization, operation, andmanagement of complex problem-driven systems [22]. These
approaches deal with a global assessment of problem requirements and the development of a systemwith
the ability to satisfy those needs. Under this framework, complex systems are understood in its complete
form as an integration of several subsystems with different functions to reach the required capability.
Systems engineering has unique characteristics that depart considerably from many engineering fields
that design and analyze isolated components separately with a single-discipline view. In contrast, rather
than a "divide and conquer" approach, systems engineering follows more of a "unite and build" problem-
solving strategy as it is concerned foremost with the big picture and understanding how the parts of the
system are interconnected. By considering the contributions of multiple disciplines, e.g., from mechanics,
electronics, cybernetics, human-machine interaction to decision-making, this approach can reconcile the
whole as more than the sum of its parts. For this reason, this transversal approach can achieve tradeoffs
and compromises between the specifications of the several elements of the system to optimize the solu-
tions created. Hence, the reasons why it is a powerful problem-solving and high-level modeling approach.
In the following, we start by establishing the key core notions from systems engineering that motivate the
use of its principles in the research that underpins this thesis, as will be explained throughout this chapter.

System: A collection of elements and their interrelations (e.g., physical, functional, and/or behavioral)

combined to form a unified whole greater than the sum of the parts, i.e., a system-level capability only

achievable by the integration of the various parts that provides a solution to a required need [22].
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To address complex systems, systems engineering theory and practice devises systems concepts, princi-
ples and reasoning tools that enable breaking down complex problems and building up integrated solutions.
From the comprehensive framework the systems thinking philosophy provides, which are extensively de-
tailed in [23], in this introduction we will highlight the ones that are most relevant in this thesis.

Concepts — abstractions, or general ideas inferred or derived from specific instances.

Wholeness and Interaction: A holistic understanding of the system as whole and how elements
interconnect is fundamental for building desired end-goal functionalities.
State and Behavior: The state is a set of attributes characterizing the system at a given time that
can be changed by events over time depending on the behavior of the system, i.e., its response.
Adaptation and Learning: The ability to change operationmodes to adjust to environment changes
or respond to distinct functional demands, and the capability to improve its effectiveness.

Principles — general basis for reasoning about systems thinking or systems approaches.

Abstraction: A focus on essential characteristics is important in problem solving because it allows
problem solvers to ignore the nonessential, thus simplifying the problem.
Encapsulation: Hide internal parts and their interactions from the external environment.
Modularity: Unrelated elements should be separated or decoupled into known discrete modules,
and related parts of the system should be grouped together with a functional hierarchy.
Parsimony: One should choose the simplest explanation of a phenomenon, such that it requires
the fewest assumptions, for requirements, design and operations.
Relations: The interconnections between elements are key to characterize the system, shaping
the structure, topology and data flows, e.g., through feedforward and feedback links.

Reasoning Tools — representations to ease the understanding of system boundaries and interactions.

Model representations: Mental models and system mappings.
Visual representations: Block diagrams and data flow diagrams.

These notions of systems thinking are harnessed and formalized through descriptive models that embody
themselves most of these concepts. To provide a generic example of a model representation, Fig. 2.1
presents a system, subject to a set of requirements, with an abstract rendering of its several modular ele-
ments and connecting relations, as well as how it relates to the environment through inputs and outputs.
While systems engineering develops vast frameworks to formally address system synthesis, operation,
management and life-cycle planning, in this work the main focus is on system architecture for adaptive
environmental monitoring networks and its implications for development of intelligent systems solutions.
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The concepts, principles and tools from systems thinking herein presented are widely applied throughout
this thesis, and also transfer to the abstractions to be introduced in the remaining of this chapter.

ENVIRONMENT

SYSTEM

REQUIREMENTS

INPUTS OUTPUTS

Elements
Relations

System

Figure 2.1: Abstract system model representation.

2.2 System of Systems Engineering
With the advent of technologically empowered societies, there is an ever-increasing number of complex
systems. That poses both a challenge and an opportunity because novel system architectures are built of
intricate subsystems, but also combine a set of several systems — a concept termed system of systems. Al-
though a system of systems can be viewed under the lens of systems engineering, the nature of this special
type of architecture arises particular differences that warrant further clarification and highlight [24].
On the one hand, systems are designed for providing a desired capability but also to bemanageable, which
imposes limits to the size and complexity of their architectures. On the other hand, in the real world sys-
tems do not operate in a vacuum, but rather exist in an environment with a multitude of monolithic sys-
tems, each designed for a narrow purpose. Naturally, as in most cases, no single system can address the
extent of the intricacy of complex problems, societies rely on the interactions between several systems.
For these reasons, the nature of interconnection between these systems is not static nor steady but rather
highly variable. In this way, to develop specific methods that can model these higher levels of uncertainty,
and leverage those to build more adaptable and flexible systems, arises the emerging field of systems of
systems engineering.
Tackling the development of a system of systems (SoS) requires a broader understanding than what the
systems engineering approach by definition can provide because this "system" departs from a stand-alone
nature built upon self-contained processes. Instead, aspects pertaining to the environment in which it
operates, and essentially the emergent behavior resulting from its nature and interactions, become nuclear
to addressing a system of systems architecture. For this reason, it is important to clarify a definition for
this concept and its characteristics, to then motivate its relevance and purpose in this work.

System of Systems: A collection of connected (in)dependent legacy, evolving, and novel systems,

that provide a unique capability, whichmust copewith uncertainty in the environment and its intrinsic

structure by having a high degree of flexibility and adaptability [24].
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Noting the greater emphasis on features such as adaptability and flexibility and the interplay between
multiple actors, next we delve deeper into the distinctive characteristics of this type of system. Figure 2.2
juxtaposes system of systems core characteristics with monolithic system characteristics based on the
differences of the nature of composing parts, i.e., its elements.

Autonomy

Belonging

Connectivity Diversity

Emergence

Foreseen, both good and bad behavior, and
designed in or tested out as appropriate.

Enhanced by deliberately creating an
emergence capability climate.

Autonomy is ceded by parts in order to grant
autonomy to the system.

Autonomy is exercised by constituent systems
in order to fulfill the purpose of the SoS.

Reduced or minimized by modular hierarchy, to
project simplicity into the next levels.

Diversity in SoS achieved by released autonomy,
committed belonging, and open connectivity.

High connectivity hidden in elements, and
minimum connectivity among subsystems.

Dynamically supplied by constituent systems
with every possibility of myriad connections.

Parts are akin to family members; belonging
of parts is in their nature.

Constituent systems choose to belong on a
cost/benefits basis and greater fulfillment.

System Elements
SoS Elements

Figure 2.2: Comparison between system elements and system of systems elements based on [25].
While a system of systems must still be understood holistically as a system, addressing its elements, which
are also complex systems, requires a more evolved approach. Higher degrees of autonomy, emergence,
and diversity will significantly influence the state and behavior of the system. Conversely, wholeness and
interaction will be radically impacted by the different natures of belonging and connectivity in SoS.
To address these issues, the nascent field of system of systems engineering (SoSE) specializes in develop-
ing multi-faceted systems that incorporate largely autonomous, heterogeneous agents with a variety of
objectives and priorities. This type of evolving systems with dynamic connections and emergent behavior
dimensions extends beyond the traditional SE approach. Thus, requiring devising adequate architectures,
processes, and tools for design, deployment and decision-making for system of systems contexts.
In that sense, next we clarify the scope of both SE and SoSE approaches with the following definitions,
and subsequently we reflect in further detail on how these two approaches are explored in this research.

Systems Engineering (SE) is an interdisciplinary engineering field concerning the development of sys-

tems that can deliver a system-level capability based on modular, interconnected and interdependent

subsystems, which are integrated in an explicitly defined form to result in an expected behavior [22].

Systems of Systems Engineering (SoSE) is a subfield of systems engineering that concerns the devel-

opment of systems leveraging flexible boundaries and interactions between independent, distributed,

and evolving constituent systems and their stakeholders [24].
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To provide some intuition of the distinction of both paradigms, we start by translating these concepts into
a concrete example of a basic capability, e.g., localization awareness of a robot in an unknown environment
in the real-world. A robot in an open unstructured environment, i.e., what is often termed in the wild, can
hardly operate reliably without external "help". As such, to have an estimate of its own position in the
environment it operates, i.e., on an open world map, it is designed to rely on an array of external systems
for localization, most notably a global navigation satellite system (GNSS). In this way, this simple example
allows grasping that a system-centric approach would be limited to address several complex dimensions
of more advanced solutions, namely when the robot would need to navigate a changing environment.
Given that sensor networks must perceive their environment and interact with existing legacy infrastruc-
ture, the modeling of this type of systems is best addressed with a System of Systems engineering frame-
work, which relies on the special characteristics and complementary capabilities of a variety of systems,
e.g., themultitude of satellite-based services used for remote sensing, weather forecasting and even global
positioning systems. Thereby, to design decentralized intelligence architectures that can deliver the nec-
essary awareness features, i.e., self-awareness, collective awareness and situational awareness.
In that sense, for this thesis on decentralized sensor networks for fire detection and monitoring, the use
of both SE and SoSE approaches becomes necessary to tackle the main research gaps this work addresses.
First, SE is fundamental in designing networks of mobile aerial robots that can perform fire detection and
monitoring, and to have a deep understanding of its inherent subsystems. Second, given the nature of
the dynamic networks intended the SoS gains more prevalence due to the need to devise algorithms that
can confer the necessary adaptability and flexibility features into sensor-driven architectures. Third, in
the genesis of the proposed architecture, it is underlying that this system will add complementarity to the
existing real-time monitoring gaps. Therefore, incorporating along with legacy infrastructure and other
emergent solutions, the next generation of highly interconnected and integrated systems of systems that
will provide fire intelligence to support decision-making.
In this context, beyond presenting the system architecture for the proposed decentralized sensor net-
works, this thesis contributions focus on several subsystem elements, e.g., optimization of cooperative
multi-robot systems and multi-modal perception solutions based on intelligent sensors. The next sec-
tions, introduce the background on multi-agent systems and intelligent systems, providing the essential
concepts for the proposed system architecture and the methods underlying the contributions of this work.

2.3 Multi-Agent Systems
Having discussed the characteristics of systems of systems and emphasized the core role interactions be-
tween several systems play, next we cover briefly how these can be addressed. With many interacting
systems and stakeholders within SoS, the complexity in driving such systems to deliver on common func-
tionality or achieve a shared goal becomes more involved. To address this issue, we will resort to a system
modeling approach that allows handling this type of architectures, i.e., multi-agent systems.

16



Multi-agent systems comprise several interacting agents that operate in a shared environment to perform
actions according to their capabilities towards a goal task. This general framework is employed in many
fields, e.g., engineering, computer science, and economics [26]. In this thesis, it is particularly suited
for modeling networked multi-robot systems and for distributed optimization methods discussed further
along. As such, in the following, we introduce the taxonomy to refer to network topology, the paradigms
for collective behavior and implications inter-agent communications play in achieving end-goals.
Sensor networks and robot teams can be modeled as multi-agent systems and described using graph
theory, where sensor agents are represented as nodes, and communication links are edges establishing
the information flow. Communications are critical for energy expenditure, so how andwhen sensors share
information must be optimized to maximize network operation while not compromising the application,
i.e., delivering on its capacity to achieve an intendedmission goal. In that sense, where the data processing
and advanced computing take place, and how data flows throughout the network play a pivotal role.
With respect to network organization, there are three important types to distinguish: centralized, decen-
tralized and distributed [27]. As illustrated in Fig. 2.3, the elements or agents making up those networks
can encompass different types and the manner in which these are organized and connected also differs.

centralized decentralized distributed

Figure 2.3: Diagram of network topologies.

In that way, the types of heterogenous agents and the hierarchical structure of the network are instrumen-
tal to determine the data processing and communication flows within the system. Consequently, these
design choices also have significant implications to features, e.g., autonomy, connectivity and redundancy.

Centralized: Organization follows a hierarchical structure, where a central unit concentrates most

resources and controls lower-level elements, which have limited connectivity and autonomy.

Decentralized: Organization follows a fault-tolerant hierarchical structure where control is shared

across several agents with high connectivity and autonomy, which allow enhanced awareness through

efficient processing of local information.

Distributed: Organization follows a predominantly flat structure where agents with limited autonomy

share equal control due to their high connectivity that ensures redundancy in information flow.
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Note that decisions on network architecture must be defined by the problem requirements, and each type
has advantages and disadvantages, thus being better suited for different applications. Next, we highlight
a few attributes to serve as comparison axes between the different types of network architectures.

Attributes — properties or features that influence system functionality, behavior or performance.

Control: The ability to coordinate andmanage actions of agents within the system through layers
of authority and autonomy in decision-making and task execution.
Resilience: The ability to withstand failures or disruptions by adapting to and/or recovering from
changes within the system or in its environment and continue to function reliably.
Scalability: The ability to sustain expansion and adaptation to meet evolving application de-
mands, by accommodating structural changes without performance degradation.

Centralized networks benefit from a high degree of control by concentrating authority and resources in a
high-level single agent. However, this comes at the expense of resilience as these architectures become
more vulnerable due to their single point of failure and limited autonomy of agents at low-level layers of
the system. These architectures also face more difficulty in scaling as the central agent needs to manage
and control cumbersome volumes of processes and interactions.
Decentralized networks have the advantage of greater control by introducing levels of shared control
through diverse decision-making levels and adding redundancy at each level. This change also supports
high system resilience by the elimination of single points of failure and increased agent autonomy. In turn,
these architectures can be easily scalable, but at the cost of being harder to manage due to high diversity
within the system, requiring more involved coordination methods.
Distributed networks scale notably well and have the highest resilience due to its flat structure that de-
mocratizes resource allocation, eliminating critical points of failure. Though, system control decreases
since the coordination and management becomes more difficult, either because of high or low degrees of
autonomy of the agents involved, requiring increased foresight in accounting for emergent behavior.
Bridging this context to the problem of developing environmental monitoring solutions for fire detection
and monitoring, a key application requirement justifies the better suitability of decentralized networks.
Wildfires are phenomena with high spatial and temporal uncertainty so the adaptability and flexibility of
sensor networks with multiple agents will largely benefit from incorporating heterogenous capabilities.
In that sense, a layered organizational structure composed of different types of monitoring solutions is
preferable to deal with the demands of this application.
Given the complexity of multi-agent systems operation, the coordination of the system of systems and its
elements towards a shared goal introduces new system dynamics, e.g., cooperation and collaboration. In
this work both of these workflows are used to address different problems, namely through the population-
based optimization methods employed and the proposed coordination strategies.

18



Coordination: The process of organizing elements of a system, i.e., multiple agents able to provide

a desired capability, to work together in an efficient manner.

Collaboration: The process by which elements of a system, i.e., multiple agents, work together to

complete a task or reach a goal that is not reachable without the confluence of complementary efforts.

Cooperation: The process by which elements of a system, i.e., multiple agents, work together to

achieve a shared aim by compromising on their individual goals towards the collective global benefit.

Coordination of efforts in networked systems is essential since while networks are built to embody redun-
dancy for resilience purposes, the design shall avoid the pitfall of over-dimensioning the system. For this
reason, cooperation and collaboration are central in enabling multi-agent systems to achieve the desired
flexibility and adaptability stemming from emergent behavior in response to changing environment. The
next section, introduces methods from the field of intelligent systems to enable modeling such systems.

2.4 Intelligent Systems
The endeavor of building intelligent systems is by no means a recent undertaking, yet it most likely never
felt so within reach as it currently appears so. Data is perceived as the new oil, and the demand for imple-
mentation of artificial intelligence embedded in complex systems is propelling fast-paced developments
in this area both in academia and industry.
Intelligent systems are an essential part of the advances in autonomous robotics and optimization in net-
worked systems, as well as in supporting decision-making. In this thesis, the objective of developing intel-
ligent systems guides the research questions addressed and dominates the methods explored in a variety
of domains, from cooperative robotics to intelligent sensors for wildfire detection.
In this context, a myriad of computational intelligence methods [28] are explored to address many of the
challenges encountered, delving into the three branches of this field, which can be outlined as follows.

Fuzzy Systems: Models derived from mathematical representations of uncertainty based on fuzzy

logic and possibilistic theory, which are able to capture the imprecision in class definitions and non-

linear behavior to mimic human-like approximate reasoning, e.g., through rule-based inference.

Neural Networks: Models inspired in the human brain that are designed to leverage gradient-based,

probabilistic methods to learn abstract representations from data samples by mapping patterns in

relationships between inputs and outputs.

Evolutionary Computing: Mathematical representations and algorithms inspired in biological evolu-

tion that usemetaheuristics for fast iteration over complex, non-convex search spaces, e.g., population-

based, derivative-free optimization techniques.
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In the next section, we frame concepts that are widely used in this thesis from a systems modeling per-
spective, covering the foundations for intelligent data-driven modeling, and the discuss important aspects
regarding different flavors of model transparency and interpretability.

2.4.1 System Modeling

For modeling approaches based on fundamental laws, also known as first-principles, the theoretical de-
scriptions are conceived from intuition and interpretation of specific behaviors. In this way, phenomena
can be translated to mathematical descriptions, which inherently render the reasoning of the assumptions,
being a powerful tool for communication among researchers. This approach has fueled scientific research
and propelled knowledge discovery, leading to the uptake of knowledge-based modeling.
In engineering, modeling from first-principles is known as white-box, i.e. if we think of our model as fic-
titious box, and were to look inside, it would be transparent to interpretation, and we would recognize
the causality and rational in the assumptions and mathematical equations that govern the model. This
idea captures the concepts of transparency and interpretability, that will be highlighted in this work. As
we proceed, analogous examples will be used to underline these characteristics in different modeling ap-
proaches.
When a system is complex in nature or it exhibits highly nonlinear behavior, our understanding can be
limited or insufficient to describe its levels of intricacy, which prevents a traditional model derivation.
Therefore, complex systems for which there is no prior knowledge call for different modeling techniques,
for instance based on empirical data — data-driven modeling.
Data-driven models encompass a multitude of approaches ranging from data mining to computational in-
telligence techniques. In recent years, as a result of the technological advances that enabled large-scale
data storage, scientific fields like data mining, knowledge discovery in databases (KDD), or artificial intel-
ligence have been gaining a lot prominence. These fields focus on developing accuracy-oriented models,
with an emphasis on computational efficiency since their main strengths are leveraged on big data analysis.
In opposition, the domain of computational discovery, stresses the importance that the knowledge emerg-
ing from computational means be communicable. However, the requirement established for the communi-
cations is the ability to follow the mathematical formalism used by scientists, e.g. in the form of equations
or algorithms. The computational discovery field borrows its intentions from artificial intelligence and
cognitive science, to attempt to emulate the process of discovery that could be obtained by humans in an
automated way, yet its models rarely translate human reasoning.
To address this issue, fuzzy modeling approaches based on rule-based inference can provide better trans-
parency and interpretation by translating the model to linguistic terms, which can be understood by non-
experts. Moreover, fuzzy systems are flexible structures, which can incorporate laws derived from first-
principles, prior expert knowledge, empirical data and heuristic rules.
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Data-driven fuzzy models are regarded as relevant tool for dynamic modeling of complex systems for
which there is no prior knowledge, through the identification of a set of local linear models based on fuzzy
logic and approximate reasoning, expressed in the form of heuristic rules. For this reason, in a modeling
sense, fuzzy inference systems can be considered a gray-box approach. Due to its rule-based nature, this
type of systems can provide better insight into the inner-workings of the complex system under study, but
also allow obtaining a better understanding of the model limitations. However, to obtain transparent and
interpretable fuzzy models that can support a tractable description, the model structure has to be simple
in that it follows the law of parsimony.
In light of the recent achievements in deep learning, learning-based modeling gained wide prominence.
However, despite the high predictive ability of deep neural networks, there are many issues left unad-
dressed and open questions with this type of models. In comparison with models derived from first-
principles, these models are considered as black-box, as they are seen as opaque. The lack of transparency
and interpretability of these models hinders an adequate evaluation of model flaws and limitations. For
this reason, these models might not be adequate for many real-world tasks. Furthermore, these models
are computational expensive to train and run, thus recently there has been increased interest in leverage
the learning acquired by deep architectures in models with reduced complexity better suited for imple-
mentation on e.g., in mobile devices.
To summarize the different facets of the intelligent systems modeling approaches explored in this thesis,
the following definitions juxtapose the concepts introduced. This is followed by a brief overview of the
tradeoffs related to model transparency, explainability and interpretability synthesized in Table 2.1.

White-box Models: Based on first principles such as laws from fundamental sciences, e.g., physics,

chemistry and biology, or from applied fields like engineering, e.g., thermodynamics or mechanics.

Black-boxModels: Based on empirical data through the derivation of mappings between inputs and

outputs, without suchmappings having a significantmeaning, by being impossible to discern or access.

Gray-box Models: Based on expert knowledge or derived from empirical data, or a combination of

both, that allows for partial visibility into model inner-workings enabling greater model insight.

Knowledge-based: Describes methods or models built upon theoretical understanding of processes

or phenomena — have a pre-established range of applicability and produce deterministic solutions.

Data-driven: Describes methods or models designed to rely on databases and / or data streams for

its intrinsic parameterization and operation, leveraging off-line and on-line derivation paradigms.

Learning-based: Describes methods or models that employ computational techniques to derive

relations by mapping patterns in empirical data, which can be from simulated experiments or real

observations, and produce in nondeterministic solutions.
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By virtue of the many fields and schools of thought dealing with complex systems, different notions of
the scope of transparency, explainability and interpretability exist in the literature [29]. While there are
significant relations between these terms, we attempt to simplify it with the framing as follows.
In an intelligent system transparency enables understanding what the model does, explainability seeks to
derive how the model operates, and interpretability provides insight into why the model works (or not).

Table 2.1: Comparison between intelligent systems modeling approaches.
WHITE-BOX GRAY-BOX BLACK-BOX

FOUNDATIONS

TRANSPARENCY

EXPLAINABILITY

INTERPRETABILITY

Based on first-principles,
e.g., fundamental laws and 
mathematical equations. 

— Based on expert knowledge;
— Based on empirical data;
— Both modalities combined.

Based on empirical data, e.g., 
simulations or experiments 
using iterative learning.

Allows complete visibility
and knowledge of model 
inner workings.

Allows partial visibility to the 
knowledge base and inference
inner workings of the models. 

Model structure is opaque or  
hidden by encapsulation and  
does not encode knowledge. 

All model abstractions 
and inner-workings can 
be described and justified. 

Model  parts and structure 
can be distilled to translate 
explanations of inner workings.

Model structure captures 
relations without logical or 
intelligible meaning.

Allows a direct translation of
model inner workings and
clearly identifying its limits.

Allows understanding the 
reasoning of patterns modeled
and to assess model limitations.

Insight is strictly based on 
experimentation , and lim-
itations are hard to scope.

As intelligent systems rapidly permeate into many areas of society, e.g. in healthcare, finance, or civil
protection, there is an increased need for accountability concerning the manner and extent intelligent sys-
tems are used. In that sense, the understanding of model transparency, explainability and interpretability
is key towards the deployment of these technologies in safety-critical scenarios such as wildfire response.

2.4.2 Data Modeling

Data processing is a crucial part of modeling based on empirical data and is a cornerstone element of
intelligent systems techniques. Data modeling approaches allow harnessing data in different ways as to
leverage distinct capabilities between model architectures, e.g., neural networks versus fuzzy models. To
take advantage of multiple modeling approaches while maximizing model performance, this thesis lever-
ages methods based on raw data, as well as techniques using derived features, which incorporate a layer
of expert knowledge in data modeling through feature engineering.

Raw Data: Concerns unprocessed information stored in digital formats that can be employed in the

state encountered at the source, e.g, as found in a database, or from sensor readings.

Derived Features: Concerns data resulting from preprocessing steps that enable amplifyingmodeling

capabilities, obtained by extraction, manipulation, or selection of variables with higher significance.
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Feature Engineering: A set of datamodeling processes used to improvemodel performance by reduc-

ing the number of variables and identifying the most significant features through feature extraction

and/or feature selection techniques.

Feature Extraction: Process of applying data transformations to create more informative features.

Feature Selection: Process of choosing the most relevant subset from the available variables.

On the one hand, featuring engineering techniques allow performing dimensionality reduction, which is
crucial for handling high-dimensional data, e.g., multimodal image data. More specifically, in the scope
of this research, because it is a hard requirement for autonomous robotics that data is processed effi-
ciently with edge computing devices with limited resources and energy constraints. On the other hand,
for creating robotic perception pipelines also benefits significantly from well engineered computer vision
algorithms that account for sensor characteristics. As such the inclusion of domain knowledge about the
working mechanisms through feature engineering also proves an additional advantage in this context.
Beyond data sources, e.g., images or time-series, which are essential of data-driven processing pipelines, it
is also relevant to emphasize the high value of complementing metadata, when it is available or collected.
It can have an instrumental role in preprocessing, but also in the whole modeling chain since it can be vital
for downstream tasks, e.g., building specific functionalities, performance evaluation and quality assurance.
Metadata access is a key resource when it is collected or available because it allows retrieving informa-
tion about data collection aspects, e.g., situational context, modes of operation of the sensors, sensor
calibration, etc. These factors are of the upmost relevance for applications in the physical world since
for such contexts data preprocessing tasks have more stringent demands, e.g., for rigorous matching and
combination of data from different sources. In that sense, metadata can allow access to key parameters
for incorporation of domain knowledge into data modeling and validation.
In this thesis, capturing and interpreting metadata is particularly relevant in the context of multimodal
robotic perception. More specifically, in creating valuable datasets with visible and thermal range imaging
data and the corresponding, synchronized pose information derived from position and inertial sensors.
The research conducted in this work included these considerations end-to-end. Starting from the design
and development of several sensor payloads, to feature engineering for thermal infrared data, and model-
ing data-driven intelligent sensors for wildfire detection and monitoring with complementary visible and
thermal data.
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The core vision and overarching purpose of this investigation center on contributing to
the development of networked environmental monitoring systems for wildfire detection
and monitoring that leverage cooperative sensing and autonomous robotics to provide
enhanced real-time fire intelligence.

To that end, the research avenues explored in this work provide novel solutions on
a variety of methods to address narrow problems, e.g., design of sensor networks,
resource optimization, or fire detection. However, the scope of the proposed thesis
expands beyond such particular domains. By design there are intentional underlying
interconnections that stem from the broader vision of the proposed system architecture,
which intrinsically merits paramount emphasis.

For that reason, this doctoral dissertation frames the proposed thesis in the systems en-
gineering perspective under which it was envisioned, and that has guided the research
questions that were formulated and addressed. In this chapter, the prime concern is to
provide not only the big picture, but rather the full picture of the directions followed and
the goals of the research directions explored and outline the manner in which these are
framed within the structure of this document.
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3.1 Proposed Systems Architecture
This thesis proposes an integrated system based on satellite and sensor networks data to assist in early
detection and monitoring of fire events. The system combines static sensors on the ground and dynamic
sensors onboard mobile aerial platforms e.g. drones and high-altitude balloons (HABs), that can be de-
ployed to monitor areas of high risk, based on satellite data.
The decentralized, multimodal and dynamic nature of the system proposed enables its deployment in
target regions in specific time-windows where there are forecasts of increased fire risk. The three-layer
system comprises network, perception and inference modules.
The first layer corresponds to a decentralized sensor network to be deployed in wildland and wildland-
urban-interface regions, that can relay real-time data relative to regions of interest. The second layer
addresses the estimation and data aggregation, yielding environment perception states. The final layer em-
ploys intelligent soft-sensor approaches, identifying specific areas in themonitored region with higher risk.
The proposed system, depicted in Fig. 3.1 integrates this multi-agent sensor network, robotic perception
modules equippedwith advanced sensors for data gathering, whose data is then preprocessed and filtered
to be used by intelligent systems that can perform fire detection and monitoring or fire risk prediction
depending on the context of application. The information generated through this network can be provided
to decision-making authorities who subsequently engage with mission control to deploy further aerial
means and communicate with the several agents within the network.

perception
raw measurements

preprocessed 
filtered data

decision-making

inference

mission control

communication 
scheduling

vehicle 
deployment

fire detection/
monitoring

fire risk
prediction satellite-based

forecasts

multi-agent sensor network
action

Figure 3.1: Diagram of the system architecture and data flows.
This generic architecture can accommodate a myriad of agents, namely ground-based sensors like static
camera networks, heterogeneous aerial robots like multi-rotor drones or flying-wing aircraft operating at
low-altitudes, high-altitude balloons acting as high-altitude pseudo-satellites in the stratosphere, as well
as integrate data from satellite sources. Fig. 3.2 illustrates the realization of this concept of system of
systems for wildfire detection and monitoring applications.
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Figure 3.2: Diagram of data flows within the proposed architecture.
Leveraging HABs as high-altitude pseudo-satellites in near-space enables monitoring large-scale events
and areas where fighter aircraft do not operate. In this way, this dynamic network can provide real-time
Earth Observation data to decision-makers allowing its integration in existing decision support systems to
generate early-warnings and optimize resource allocation.
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3.2 Thesis Objectives
The principal objective of this thesis is the development of solutions for identification and monitoring of
regions with higher fire probability, and for early detection of fire events towards the mitigation of the re-
sulting impacts. Fire ignitions have a high degree of uncertainty, both on spatial and temporal levels, being
difficult to pinpoint the ignition sources in a short time-frame. Furthermore, climate change increases the
probability of a fire ignition leading to a fire of significant proportions. With the escalation in the initial fire
spread propensity of these events, it is necessary to diminish the response time from emergency teams.
To address this issue, this work proposes an integrated model based on satellite and sensor networks data
to assist in early detection andmonitoring of fire events. The three-layer systemwith network, perception
and inference modules, enables relaying real-time data to decision-makers, enabling the deployment of
autonomous aerial vehicles for operational and decision support.
The envisioned system combines static and dynamic sensors, providing multiple layers of perception of
the environment. Ground sensors provide data from identified fire risk regions, whereas aerial vehicles
empowered with perception systems deliver extensive area coverage.
The decentralized and dynamic nature of the system enables its deployment in wildland-urban inter-
face (WUI) areas in specific time-windows, targeting forecasts of increased fire risk. Moreover, it is in-
tended that the information gathered from this dynamic network can be integrated in existing decision
support systems to generate early warnings and optimize resource allocation.
The objective of this thesis is achieved by the following steps:

Development of decentralized sensor network architectures for environmental monitoring;
Propose cooperative strategies for engaging heterogeneous robotic platforms;
Development of laboratory tests and field trials in realistic scenarios for data acquisiton for multi-
modal robotic perception and development of intelligent systems for fire detection and monitoring;
Propose intelligent inference systems for fire event detection and monitoring;

3.3 Research Questions and Directions
To investigate on these multiple domains, the proposed approach is underpinned by the systems engi-
neering philosophy. This allows harmonizing the desired integration of solutions developed, but, more
importantly, to lay the grounding assumptions and guiding principles that motivate the design choices in
the methodologies proposed in this thesis.
In that sense, this research explores four scientific areas, namely systems engineering, networked systems,
robotic perception and computational intelligence. Each of these four vectors essentially contributing
with scientific approaches to address the spatial and temporal complexity and uncertainty associated with
real-time detection and monitoring of wildfire events.
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To tackle this complex issue, the research directions explored address three major questions. The first
concerns the design of decentralized mobile networks. The second focuses on empowering mobile robots
with perception capabilities to detect andmonitor wildfires. And, the third pertains to scaling data curation
of image data towards harnessing learning-based techniques in fire intelligence tasks in a broader sense.
In the following, each of the research questions is formulated and the derived requirements are discussed.

Question 1: How to devise environmental monitoring networks that (1) can adapt according to the

environment changes, and (2) provide fire intelligence in real-time?

Main goal: Develop systems that embody high-levels of automation, flexibility and versatility.

Requirements:

Provide coverage for extensive areas with highly uncertain spatiotemporal event incidence.

Reconciling the trade-offs between the energy constraints and data-intensive solutions.

To address this question, it is important to recall two of the foundations set forth in the introduction,
i.e., the system and system-of-systems concepts. In this thesis, the proposed approaches leverage these
frameworks to design the multi-agent networks, i.e., a system-of-systems, able of providing a capability to
detect and monitor wildfires. Furthermore, to attain the desired adaptability, flexibility and versatility, the
network design will need to reflect the intended levels of autonomy, emergence, diversity, connectivity
and belonging of each element in the network itself and its constituent systems, as described in Fig. 2.2.
In that vein, this work investigates techniques to address strategic and tactical decision-making concerning
dimensioning and design of aerial networks. To that end, aiming at establishing suchmobile infrastructures
to handle distinct demand profiles and with versatility to be useful for tasks, e.g., aerial surveillance for
early fire detection and active fire monitoring. Along these lines, this research aims to develop solutions
that enable deriving the configurations of heterogeneous fleets of aerial vehicles that are optimized for a
predicted demand profile known a priori.
Moreover, attending to the energetic limitations aerial platforms have, the coverage of large areas requires
the deployment of several decentralized multi-UAV fleets. For this reason, the complexity to engage such
mobile infrastructures in a demand-driven paradigm calls for explicit schema for coordination of these
networks. In this vein, this research studies novel methods to cooperatively coordinate multiple networks
of aerial assets, distributed along several regions, while being cognizant of its flight endurance character-
istics and realistic constraints concerning range of communication and on-board computing capabilities,
which play an important role energy-wise.
In this thesis, Part II - Decentralized Networked Systems is devoted to presenting the solutions proposed
to answer Question 1. Additionally, a concise summary highlighting its most significant contributions is
presented in the next chapter in section 4.2.
In this context, to empower unmanned aerial vehicles to perform fire intelligence tasks, e.g., surveillance
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and active fire monitoring with a high level of automation, these need to rely heavily on artificial intelli-
gence breakthroughs. However, several roadblocks challenge the implementation of these solutions due
to their high autonomy requirements and energy-constrained nature. In a sense, the widespread focus on
artificial intelligence developments based on large models, to some extent, hinders the development of
models suitable for deployment onboard these platforms. For this reason, although artificial intelligence
approaches can be an enabling technology that can effectively scale real-time monitoring services and
optimize emergency response resources, the design of these solutions needs to be informed by three
important vectors : (i) data requirements, (ii) computing constraints and (iii) communications limitations.
Data-driven artificial intelligence is central to both handling multimodal sensor data in real-time and to
annotating large amounts of data collected, which are necessary to build robust safety-critical monitoring
systems. Nevertheless, these two objectives have distinct implications computation-wise because the
first must happen on-board, whereas the second can leverage higher processing capabilities off-board.
In this way, this thesis argues that real-time processing and data annotation shall be tackled in a com-
plementary manner instead of the general practice of solely targeting improvement of overall accuracy.
To build wildfire intelligence at the edge, we propose developments on two tracks of solutions: (i) de-
ployment on the edge and (ii) data annotation. The need for considerable research efforts in these two
avenues stems from both having very distinct development requirements and performance evaluation
metrics. Whereas the former is driven foremost by timeliness, the latter must emphasize accuracy. Thus,
in this work these research problems are posed as two distinct research questions.

Question 2: How to develop data processing pipelines that (1) have reduced computational burden,

and (2) are robust to failure modes that occur in the real-world?

Main goal: Improve performance in deployment conditions.

Requirements:

Data-driven approaches have significant energy constraints.

Processing speed is key, yet accuracy can not be overlooked at least on a coarse level.

To answer this second question, it is important to first recognize that the perception autonomy of robotic
platforms essentially drives mission performance, being a primary reason for the need for edge computing
of onboard sensor data. Nonetheless, in addition to this argument, the communications design is also fun-
damental for mission endurance as relaying large amounts of data in real-time is unfeasible energy-wise.
For these reasons, this work devotes attention to data-driven intelligent systems methods that can offer
state-of-the-art performance in deployment in real-world contexts, while having a computational load
amenable for the energy limitations of aerial robots. Though, for data-drivenmodels, themethods are only
half of the equation, bringing to the forefront key considerations about the datamodalities used, the form in
which those are processed, and the implications source data have for model robustness.
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Image-based fire detection and monitoring solutions typically explore images from the visible and ther-
mal infrared spectral range because each have its own advantages and disadvantages. This thesis aims to
explore multimodal approaches to leverage the capabilities of each of these sensory modalities in a com-
plementary manner so as to augment the scope of applicability and minimize their limitations. However,
despite tremendous leaps on data-driven modeling and intelligent inference based on image data in recent
years, the lack of high-quality image databases for this application is still a major barrier for harnessing
learning-based approaches in this domain.
Data quality and availability are crucial for the development of robust learning-based models that can pro-
vide generalization ability to real-world contexts. Given the current gap in this area, this research invested
significant time and efforts to develop cost-efficient payloads and perform extensive experimental trials
both to study sensor response in fire scenarios and to collect datasets for multimodal robotic perception.
In this context, maintaining a strong emphasis on data processing with edge computing and ways to im-
prove performance in deployment, this research undertakes an in-depth study of thermal cameras. This
analysis allows a better characterization of the behavior of these sensors in real fire situations and pre-
vents misconceptions that could hamper their use in robotic perception pipelines. Furthermore, with the
growing interest in leveraging aerial robotics for wildfire support operations, one desired result of this
work centers on the open release of multimodal datasets for this application.
Concerning the development of data-driven approaches for intelligent inference without significant en-
ergy constraints two routes are taken, one targeting visual range data and another focusing on thermal
image data. This choice is justified by the fact that visual and thermal imagery have very distinct character-
istics and consequently the state-of-the-art methods for handling those data are also rightfully different.
Given that learning-based models depend to a great degree of the quality of data available for deriving
such models, the methodologies this thesis explores bears in mind the aforementioned data limitations.
For visual range data, this work investigates deep neural network architectures proposing a transfer learn-
ing approach leveraging data augmentation techniques. In turn, for thermal imaging data, this research
proposes a novel approach using data-driven fuzzy models based on feature engineering.
Towards the goal of improving performance in deployment, these techniques are developed and tested on
a wide array of scenarios from real contexts, e.g., fire events, experimental burnings, as well as scenarios
without fire sources that are commonly identified as potential causes of misclassifications. Thus, allowing
for better generalization and robustness to potential failure modes in the real world. Moreover, an impor-
tant asset of the methods concerns inference speed, which enables application to real-time data streams,
namely onboard mobile platforms using low-cost, commercially-of-the-shelf edge computing devices.
In this document, we address Question 2 in Part III - Multimodal Robotic Perception and Part IV - Intel-
ligent Fire Detection and Monitoring. Further along in Chapter 4 - Contributions, the advances on both
dimensions are briefly discussed in sections 4.3 and 4.4, respectively.
While for deployment the development architectures need to compromise on robustness and architectural
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parsimony in order to be efficient for edge processing, for data curation the goals and requirements change
considerably. In this scope, improving data annotation capacity is essential to build high quality databases
that can provide better source data for machine learning solutions. From this perspective, for the third
research question, this thesis shifts focus towards how intelligent systems can be an instrumental tool for
automating data curation processes.

Question 3: How to build data curation pipelines that (1) enable creating large-scale datasets, and

(2) include relevant annotations?

Main goal: Improve large-scale data annotation.

Requirements:

Data-driven approaches without significant energy constraints.

Can prioritize fine-grained performance over processing speed.

Before delving into the third question, an important consideration concerns the complexity in reconciling
the need of curating ever-increasing amounts of data while ensuring that the resulting databases have
relevant data and annotations for their use in subsequent applications. Artificial intelligence can play a
pivotal role in streamlining these procedures, however, the strengths and limitations of black-box and
gray-box methods shall be weighed when developing data processing pipelines in this domain.
Despite the renewed interest in data-centric approaches to AI-based data annotation tasks, in many use-
cases the incorporation of domain knowledge is not as relevant as in applied sciences and engineering,
or in safety-critical applications, e.g., environmental monitoring, maintenance inspections and healthcare.
In that sense, black-box approaches present several drawbacks due to their lack of transparency and
interpretability, limiting the scope of their application and imposing stricter requirements on data quality.
In this context, this research investigates how expert-in-the-loop approaches can be explored for data
annotation in wildfire management tasks, by combining the benefits of semi-automated data annotation
with relevant domain knowledge expertise. Along this line, we aim to propose data processing pipelines
for fine-grained pixel-wise data annotation, reducing significantly the time that experts dedicate to classify
and segment fire events in image datasets, which is extremely time consuming and onerous.
To promote a better multidisciplinary collaboration in the data curation procedure, the approaches ex-
plored in this thesis aim to leverage interpretable linguistic models that can be easily adjusted through
fine-tunable rules. In this way, besides guiding appropriate data annotations tasks, experts can be involved
in the feedback loops to improve algorithms and validate the quality of the resulting annotations.
This thesis addresses Question 3 specifically in Part V - Data Curation Approaches, building upon chal-
lenges and learnings identified from the preceding Part IV - Intelligent Fire Detection and Monitoring.
Similarly to the previous questions, Chapter 4 - Contributions features a brief summary of the main con-
tributions on this topic in section 4.5.
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3.4 Outline
In this Part I - Introduction, the first two chapters started by framing the motivation (Chapter 1) and set-
ting the background for the proposed approach (Chapter 2). Chapter 3 - Proposed Approach outlined
the objectives this work sets out to accomplish and research questions addressed, explaining the reason-
ing underpinning the research directions explored. In the next chapter, Chapter 4 - Contributions, the
scientific contributions on each topic are summarized and highlighted.
In a fitting way, the structure of this thesis follows a systemic approach, organizing this body of research
in distinct modules as follows.
Part II - Decentralized Networked Systems centers on mobile environmental monitoring networks, focus-
ing on design of demand-driven networks and cooperative coordination strategies for such systems.
Part III - Multimodal Robotic Perception presents the research on multimodal perception using on thermal
and visual range data, resulting from real fire experiments done in laboratory and field environments.
Part IV - Intelligent FireDetection andMonitoring focuses on learning-based intelligent systems approaches
for fire detection and monitoring for thermal and visible images.
Part V - Data Curation Approaches tackles data curation approaches for wildfire intelligence in a broader
sense using expert-in-the-loop approaches, and presents a proposed technique fire data annotation.
At last, Part VI - Conclusion closes with concluding remarks concerning the principal takeaways from this
thesis and points to ensuing directions of future work.
To relate the structure of this document with the proposed system architecture outlined in Figure 3.1,
next Table 3.1 showcases which different parts and chapters contribute to each module of the system
proposed in this thesis.

Table 3.1: Outline relating the structure of the thesis with the proposed system.
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This chapter presents the contributions of this thesis, by summarizing the breadth of
topics explored and listing several publications that resulted from this research. Following
an initial overview, each subsequent section delves deeper into the contributions of each
chapter, highlighting its most significant contributions and achievements accomplished.
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4.1 Contribution Overview
In line with the objectives previously outlined, this research will follow an application focused approach,
targeting detection and monitoring of wildfire events. Nonetheless, the some of the solutions proposed
and developed are not limited to this application, and themethodologies herein presented can be used in a
wider range of robotics-based applications. This results from the systems engineering approach followed,
and of themodeling abstractions andmethods employed, which to a large extent are based on data-driven
methods. As such it is important to highlight that pivotal features of the proposed mobile decentralized
networks are its flexibility and versatility. Thus, the proposed approach could translate well to different
wildfire management tasks, or to a plethora of emerging applications requiring aerial assets.
The integrated approach contributes to extend the state-of-the-art on four main topics:
T1 Development of multimodal networks of sensors, improving performance and robustness using de-

centralized approaches;
T2 Novel feature engineering approaches for wildfire detection;
T3 Multimodal data-driven intelligent systems;
T4 Data curation approaches for annotation of fire image data;

Towards the first topic, T1, research focused on optimization of the dimensioning and design of heteroge-
neousmulti-UAVfleets, as well as on cooperative coordination strategies for resilientmulti-UAV networks,
which has led to the following works:

M. J. Sousa, A. Moutinho, M. Almeida. (2020). Decentralized Distribution of UAV Fleets Based on

Fuzzy Clustering for Demand-driven Aerial Services. 2020 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Glasgow, Scotland, July, 2020. doi: 10.1109/FUZZ48607.2020.9177642.
M. J. Sousa, A. Moutinho, M. Almeida. (2023). Coordination in Decentralized Multi-UAV Fleets for

Network Resilience using Adaptive Fuzzy Graphs. [journal article in development]
M. J. Sousa, A. Moutinho, M. Almeida. (2022). Leveraging High-Altitude Balloons and Mobile

Robotics for Wildfire Detection and Monitoring Systems. In Proceedings of the 25th ESA Sym-
posium on European Rocket and Balloon Programmes and Related Research (ESA-PAC), Biarritz,
France, May, 2022.

Concerning the second and third topics, T2 and T3, that are intrinsically related, extensive work is being
developed on creating proper multimodal image datasets. This is an ongoing activity throughout this col-
laborative research, including both data collection from online open-sources and data acquisition in field
measurement campaigns. Part of this work contributed to the national research project Eye in the Sky1.

A. Moutinho, M. J. Sousa, M. Almeida et al. (2022). Eye in the Sky - Using High-Altitude Balloons

for Decision Support in Wildfire Operations. IX International Conference on Forest Fire Research
(ICFFR), Coimbra, Portugal, November, 2022. doi: 10.14195/978-989-26-2298-9_29

1Eye in the Sky website: eyeinthesky.tecnico.ulisboa.pt
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In parallel to these efforts, several iterations of versatile multimodal sensor payloads have been developed
for real-time on-line edge computing that will enable autonomous robotics missions for aerial surveillance
services. This line of research has generously been supported in form of hardware and seed grants, namely
the NVIDIA GPU Grant and IEEE RAS-SIGHT Humanitarian Award, respectively. The current dataset in-
cludes thermal and visible range data, acquired at ground level, as well as from airborne platforms, includ-
ing drones, aircraft and high-altitude balloons.

M. J. Sousa, A. Moutinho, M. Almeida. (2020). Autonomous multimodal robotic perception system

for intelligent wildfire detection and monitoring. IROS 2020 Workshop on Humanitarian Robotics,
October, 2020. [non-archival contribution, RAS-SIGHT project]
M. J. Sousa, A. Moutinho, M. Almeida. (2023). MAVFire: Aerial thermal-visual-inertial-GNSS

dataset for MAV-based fire applications with motion-based calibration. [journal article in develop-

ment]
Furthermore, also regarding topics T2 and T3, this research contributed to the state-of-the-art in multi-
modal wildfire detection and monitoring by extending the understanding of thermal infrared cameras in
fire situations, and proposing data modeling approaches for detection and monitoring applications. Fur-
thermore, this research developed novel data-driven intelligent sensors based on clustering-based fuzzy
modeling and deep neural networks, resulting in the following journal publications.

M. J. Sousa, A. Moutinho, M. Almeida. (2019). Classification of potential fire outbreaks: a fuzzy mod-

eling approach based on thermal images. Expert Systems with Applications, 129, 216–232. Elsevier.
doi: 10.1016/j.eswa.2019.03.030
M. J. Sousa, A.Moutinho, M. Almeida. (2020). Thermal Infrared Sensing forNear Real-timeData-driven

Fire Detection and Monitoring Systems. Sensors 2020, 20, 6803. doi: 10.3390/s20236803
M. J. Sousa, A. Moutinho, M. Almeida. (2020). Wildfire detection using transfer learning on augmented

datasets. Expert Systems with Applications, 142, 112975, Elsevier. doi: 10.1016/j.eswa.2019.112975
An intended outcome of this continued effort is the public release of open-source image databases that
can empower future advances in data-driven wildfire intelligence tasks. With that aim, in the scope of
the fourth topic, T4, this research addressed approaches and methods to scale data annotation using ma-
chine learning and computer vision techniques with relevant expert knowledge informing data processing
pipelines, as reflected in the following works.

M. J. Sousa, A. Moutinho, M. Almeida. (2020). Expert-in-the-loop Systems Towards Safety-critical

Machine Learning Technology in Wildfire Intelligence. NeurIPS 2020 Workshop Tackling Climate
Change with Machine Learning, December, 2020. [non-archival]
P. Messias, M. J. Sousa, A. Moutinho. (2021). Color-based Superpixel Semantic Segmentation for

Fire Data Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxem-
bourg, Luxembourg, July, 2021. doi: 10.1109/FUZZ45933.2021.9494421

Part of this research has been presented and formally accepted as a Best Practice Use Case Proposal to
integrate the work of the Focus Group on AI for Natural Disaster Management (FG-AI4NDM), organized

37

http://dx.doi.org/10.1016/j.eswa.2019.03.030
http://dx.doi.org/10.3390/s20236803
http://dx.doi.org/10.1016/j.eswa.2019.112975
http://dx.doi.org/10.1109/FUZZ45933.2021.9494421


by three agencies from the United Nations, namely the International Telecommunication Union (ITU), the
World Meteorological Organization (WMO) and United Nations Environment Programme (UNEP). Regard-
ing more directly the third and fourth topics, T3 and T4.

M. J. Sousa, A. Moutinho, M. Almeida. (2022). Multimodal Databases and Artificial Intelligence for

Airborne Wildfire Detection and Monitoring. Proposal presented at the 6th Meeting of the Focus
Group on AI for Natural Disaster Management, Geneva, Switzerland, 7–9 June 2022.

In this context, this work has been presented in the activities of the Focus Group and related events,
namely:

M. J. Sousa, A.Moutinho, andM. Almeida. (2022). Bringing AI to the Edge: Data-driven Approaches
for Real-TimeWildfire Detection andMonitoring, AI for GoodWebinar on Artificial Intelligence for
Natural Disaster Management, 16th March 2022.
M. J. Sousa, A. Moutinho, and M. Almeida. (2022). Building wildfire intelligence at the edge: bridg-
ing the gap fromdevelopment to deployment, EGUGeneral Assembly 2022, Vienna, Austria, 23–27
May 2022, EGU22-12432, doi: 10.5194/egusphere-egu22-12432.
M. J. Sousa, A. Moutinho, and M. Almeida. (2022). Building wildfire intelligence at the edge: bridg-
ing the gap from development to deployment, UN Environment Webinar on Modern Technologies
in Combatting Disasters on a Hotter Planet, 21st September 2022.

The remaining of this chapter covers in greater detail the contributions presented in each part of this
thesis, which is divided into chapters corresponding to the most relevant aforementioned publications.
The next sections are structured to present a brief context of the problems tackled and highlight the key
contributions and relevant interrelations to other chapters presented in this thesis.

4.2 Decentralized Networked Systems

Background

Unmanned aerial vehicles provide a flexible and versatile solution for environmental monitoring, finding
a prime application in wildfire detection and monitoring operations. However, due to the nature of fire
events, the demand for this type of aerial services (i.e., requests for surveillance tasks) is sparsely dis-
tributed and comprises great spatiotemporal uncertainty. For these reasons, prior to the deployment of
aerial means, the dimension and configurations of multi-UAV systems need to be properly designed to
build adequate capacity for the expected coverage and range requirements.
However, due to the stringent energy limitations of aerial robots, the range of operation is inherently local,
which is an hindrance for fire detection and monitoring that requires operation over extensive areas. In
this context, it is crucial to design mobile decentralized systems with the ability to adapt its structure in
response to the dynamic changes in real-world scenarios. In that sense, this thesis argues that sharing
resources between neighboring multi-robot networks may be critical for resilience to demand variations.
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Contributions

To address these issues, this thesis presents a demand-driven dimensioning strategy for networks of aerial
vehicles based on a hybrid clustering approach, that incorporates heterogeneous vehicle characteristics
and energy-related autonomy constraints to determine the type and number of vehicles required tomeet a
given demand. The approach follows a fuzzy data-drivenmethod that enables generating coverage regions
with elastic boundaries that allows for cooperation between neighboring regions to manage high and low
demand scenarios, providing improved resilience to demand fluctuations and ensuring a well-conditioned
formulation for the optimal resource allocation problem.
In turn, this thesis introduces a coordination framework based on adaptive fuzzy graphs that leverages
symbiotic cooperation between neighboring decentralized networks. The cooperation strategy leverages
the uncertainty in the boundaries of each region coupled with a decentralized ant colony optimization
approach. The proposed fuzzy approach allows adjusting the redundancy level to negotiate the trade-off
between mission goals and infrastructure cost. Simulation experiments applied to the task assignment
problem allowed evaluating the effect of redundancy for specific tasks and how inter-network trades
contribute to a reduced global cost.
These contributions represent novel methods for (i) the design of aerial networks and (ii) the coordination
of multiple decentralized networks operating over several regions. These developments have resulted in
a paper published in the proceedings of an international conference and are leading to an original journal
article currently in preparation. Both these are presented in detail in Chapter 5 and Chapter 6, respectively.

4.3 Multimodal Robotic Perception

Background

The advances in sensor hardware and embedded computing have led to the gradual miniaturization of
these technologies and the concomitant decrease in equipment costs. These emerging solutions are en-
abling real-time processing of high-dimensional data, enabling equipping UAVswith advanced thermal and
optical image sensors and powerful computing platforms for on-board data processing. With the increas-
ing interest in leveraging autonomous mobile robots for fire detection and monitoring arises the need to
design robotic perception systems that can cope with these extreme environments.
In this context, one of the aims of this thesis is to contribute to the development of autonomous UAV-
based systems for fire detection and monitoring, namely in what concerns the integration of thermal
cameras in robotic perception for these tasks. Furthermore, given that visual and thermal range data
have complementary capabilities, a topic of focus in this thesis centers on the development of multimodal
datasets to support further investigation in this area of field robotics.
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Contributions

This thesis presents a deep investigation of the sensing capabilities and image processing pipelines of
thermal imaging sensors for fire detection applications, and showcases extensive experimental tests car-
ried out with multimodal sensor payloads for data collection purposes, resulting specifically in a curated
dataset for UAV-based applications in this domain.
Regarding the study on thermal cameras, we start by presenting an overview of image processing algo-
rithms used in thermal imaging regarding data compression and image enhancement, which are respon-
sible for transforming raw data into color-encoded images. This step is crucial for having an adequate
representation and perception of the fire characteristics, such as its dimension and boundaries. Secondly,
we introduce a method for data-driven thermal imaging analysis designed for fire situation awareness
in robotic perception that includes variables based on raw data, as well as features derived from color-
encoded images.
Towards robot autonomy in these tasks, robust perception systems have to handle highly dynamic contexts
and extreme values of sensor response without filtering out key data, which poses a challenge as datasets
in field robotics with these characteristics are not available in the research community. For this reason,
an important research angle was the development of a multimodal dataset was created from controlled
burns field experiments comprising several flight profiles and relevant fire scenarios, designed to aggregate
a series of sequences that presented challenges for robotics perception pipelines.
On the one hand, a significant contributions of the experiments and studies undertaken, consists of ad-
vancing the understanding of the inner-workings of thermal cameras in wildfire scenarios, which is instru-
mental for the development of sound data modeling approaches. On the other hand, another important
contribution resulted from developing a thermal-visual-inertial-GNSS dataset for UAV-based robotics and
fire applications, envisioned to support the advancement on intelligent robot autonomy in this domain.
These contributions in multimodal robotic perception resulted in a peer-reviewed research article pub-
lished in the international journal Sensors (MDPI) and have been of a data paper currently in preparation.
Both these contributions are presented in extended form in Chapter 7 and Chapter 8, respectively.

4.4 Intelligent Fire Detection and Monitoring

Background

Wildfire detection is a time-critical application as the difficulty to pinpoint ignition locations in a short
time-frame often leads to the increase of fire perimeter, larger burned areas and wider fire impacts. This
difficulty has motivated considerable interest in the use of image-based sensors for the development of
accurate detection and monitoring solutions. However, image can be regarded as high-dimensional data
and applications in the wild, a term often used to refer to outdoor, unstructured environments, involve
very complex visual understanding tasks. Although intelligent systems are providing tremendous improve-

40



ments in performance as demonstrated in the current literature, there is still a challenging gap to translate
state-of-the-art research results to reliable deployments in real-world contexts.
To address this gap, this work considers solutions to this issue on two different angles by exploring mul-
timodal data and investigating suitable methodologies and algorithms to develop data-driven intelligent
systems. To that end, this work leverages contributions from preceding and ongoing research in multi-
modal data acquisition in fire environments. In addition, for visual range data additional database sources
are employed, some available in current scientific literature, while some datasets created specifically for
the context and purposes of this research.

Contributions

To address the challenges in visual-based fire detection, this work reviewed state-of-the-art literature to
identify common shortcomings of these approaches. Given the a central issue concerns the quality of the
databases used for learning-based approaches, namely for developing deep neural network architectures,
this work looked into alternative options. To overcome data limitations, this work proposes a transfer learn-
ing approach coupled with data augmentation techniques tested with a tenfold cross-validation scheme.
This framework enables leveraging an open-source dataset with images from real fire events, which un-
like video-based works offers higher variability between samples, allowing evaluating the approach in an
extensive set of real scenarios. In addition, our model evaluation included a comprehensive analysis of
the patterns causing misclassifications that offered key insights to guide future research in this area.
Concerning thermal imaging data, explores datasets from experimental trials conducted in a laboratory
setting and at a summer festival venue under actual operation conditions. Through an in-depth and in-
sightful data analysis of the response of thermal imaging sensors to a fire ignition, this research devised a
novel feature engineering process that allows an intuitive understanding of the behavior of thermal cam-
eras in these conditions. To deal with high-dimensional data, the feature construction method follows
a statistical color-based approach, which characterizes the dynamic behavior captured in the data using
three features. Subsequently, this work leverages these variables in a fuzzy modeling approach that is
transparent to interpretation and enables the assessment of the patterns being modeled.
These two avenues of research introduced novel approaches for (i) improving performance evaluation
of transfer learning for image-based detection of wildfires using deep neural networks (ii) data-driven
fuzzy models for fire detection and monitoring based on thermal images. These contributions have been
featured in two peer-reviewed articles published in the international journal Expert Systems with Applica-
tions (Elsevier). Both of these are presented in detail in Chapter 9 and Chapter 10, respectively.
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4.5 Data Curation Approaches

Background

Intelligent fire detection systems are a promising application in ever-increasing demand, but the limited
number and size of open datasets, and lack of annotations, hinder model development. Solving these
issues requires that experts dedicate significant time to classify and segment fire events in image datasets
frommultiple perspectives when these exist. From this standpoint, it is inefficient to endeavor such efforts
for very narrow use cases. As such, it makes sense to broaden the scope of data annotation procedures
to include more contextual information. This is relevant not just for enhancing the scene understanding
of particular tasks but also because it opens the applicability of the datasets for a myriad of relevant
applications in wildfire management and beyond, e.g., land cover and land use, forestry, and agriculture.
In that sense, this work investigates methods to scale data annotation by means of automated computer
vision and intelligent systems techniques. One central aspect for devising image processing pipelines
to bridge the gap of automating the image processing concerns the inclusion of rich annotations that
are relevant for the target application and advantageous for the learning algorithms and performance
evaluation processes. To tackle this problem, our research focuses on devising expert-in-the-loop systems
that combine the benefits of semi-automated data annotation with relevant domain knowledge expertise,
particularly through the use of interpretable data-driven modeling techniques.

Contributions

This thesis proposes the development of expert-in-the-loop systems that combine the benefits of semi-
automated data annotation with relevant domain knowledge expertise and outlines several areas of wild-
fire management where image-based tasks could be leveraged. Through this preliminary review, we con-
tribute to establish a wider awareness on data curation processes and the requirements for creation of
large-scale image databases for relevant wildfire tasks. Therefore, contributing to building foundations
that can empower the application of machine learning techniques in wildfire intelligence in real scenarios.
Towards building large-scale curated datasets, we explored a data annotation method that leverages se-
mantic segmentation based on superpixel aggregation and color features. The approach introduces inter-
pretable linguistic models that generate pixel-wise fire segmentation and annotations, which are explain-
able through simple fine-tunable rules that can support subsequent annotation validation by fire domain
experts. The outcomes of this approach pave the way for creating large-scale datasets that can empower
future deployments of learning-based architectures in fire detection systems.
These contributions concerning data curation are two fold: (i) propose expert-in-the-loop systems for
image-based applications in wildfire management, and (ii) develop a fire data annotation pipeline lever-
aging a novel algorithm combining color-based clustering segmentation and interpretable linguistic fuzzy
models. These contributions have resulted in two peer-reviewed papers to international conferences and
are presented in Part VI - Data Curation Approaches.
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II | Decentralized
Networked
Systems

Contents
5 Design of UAV Fleets 45

6 Coordination of Decentralized Multi-UAV Fleets 61

Summary
This part centers on devising mobile environmental monitoring networks, focusing on
architectural and coordination aspects of such systems. Chapter 5 proposes a novel op-
timization approach for dimensioning and design of heterogenous aerial fleets that com-
bine different vehicles types to respond to a variety of realistic demand scenarios. Chap-
ter 6 builds upon thework presented in the previous chapter, by focusing on coordination
of multiple decentralized multi-UAV fleets deployed across several regions with variable
demand profiles. Both of these chapters explore novel hybrid methods leveraging fuzzy
modeling, clustering techniques and ant colony optimization.
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The material included in this chapter was previously featured in a peer-reviewed
conference paper, published in the proceedings of the 2020 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) © 2020 IEEE.

Published in:
M. J. Sousa, A. Moutinho, M. Almeida, Decentralized Distribution of UAV Fleets
Based on Fuzzy Clustering for Demand-driven Aerial Services, in IEEE International
Conference on Fuzzy Systems (Institute of Electrical and Electronics Engineers Inc.,
2020), vols. 2020-July. doi: 10.1109/FUZZ48607.2020.9177642
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5.1 Introduction
The pressing challenges faced in modern societies to address emergency response operations, remote
environmental monitoring or on-demand delivery are opening a broad scope of novel civilian applications
of unmanned aerial vehicles (UAVs) [30]. For this reason, there has been increased research interest in
developing multi-UAV systems to perform autonomous missions, providing a cost-efficient solution to
carry out valuable tasks. In that sense, the advances in robotics are paving the way for future aerial
networked systems that comprise a resilient mobile infrastructure capable of adapting to dynamic events
in real-time.
In this context, the optimization of multi-UAV systems can be casted as a combinatorial problem and
several variations of classical formulations have been proposed e.g. Traveling Salesman Problem [31, 32],
Vehicle Routing Problem [33], orOrienteering Problem [34]. However, although extensive research has been
devoted to address this issue from a resource allocation standpoint, in which a set of fixed resources has
to be assigned to tasks, these approaches formulate the problem under the assumption that the resources
of the system are able to satisfy the tasks to be performed. In that sense, it is implied that the endurance
of the available vehicles is sufficient to provide adequate coverage to a fixed area. In general, works do
not delve into the question of how to dimension the system, which is essential to ensure the problem is
not ill-conditioned.
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Figure 5.1: Demand-driven clustering for multi-UAV fleets.
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Hence, the problem of dimensioning multi-UAV systems requires considering a wider scope, because the
optimization of resources in vehicle assignment scenarios encompasses a chain of decisions on different
levels and temporal scales:

i) strategic level: long-term design decisions related to the dimension of the fleet, e.g., the number of
vehicles in the network, the type of vehicles and desired characteristics;

ii) tactical level: mid-term planning decisions regarding network configurations for different demand
scenarios and deployment strategies, targeting availability and costs;

iii) operational level: short-term operational decisions concerning vehicle routing, scheduling strategies
and trajectory optimization for mission-oriented performance.

These aspects are highly intertwined because flight time is dependent on vehicle characteristics, as well
as deployment and demand locations. These parameters drive how the system is able to respond to
fluctuations in the stochastic demand, but are rarely explicitly handled in resource optimization.
To bridge this gap, this paper focuses on strategic and tactical levels, by addressing the dimensioning and
design of multi-UAV systems, focusing on demand-driven network optimization based on fuzzy clustering,
illustrated in Fig. 5.1.
The proposed approach is threefold: i) it builds decentralized networked systems based on cluster-based
partitioning using fuzzy clustering to ensure adequate area coverage in the region of interest; ii) within
each cluster, inner-clusters based on hierarchical density structure are extracted to dimension the multi-
UAV fleets with adequate vehicle-types; and iii) the fleet configurations are designed to satisfy the de-
mand.
This work contributes to the state-of-the-art by proposing fuzzy partitioning policies that incorporate
heterogeneous vehicle characteristics and energy constraints into the cluster optimization process. The
principal advantage of this method is that its ability to cope with data uncertainty enables generating cov-
erage regions with elastic boundaries which allows cooperation between neighboring regions to manage
high and low demand scenarios. To explore this approach, this work analyzes a case-study focused on
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Figure 5.2: Example of demand forecasting for a 5-day time horizon: (a) distribution of aerialservices according to homogeneous Poisson point process; (b) demand profile for each timeinterval, T , considering each day with 12-hour operational time.
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area coverage in wildfire detection and monitoring scenarios, namely in surveillance missions and active
fire monitoring. From a resource optimization perspective, the proposed framework for dimensioning and
design of UAV fleets simplifies the problem formulation stage, because by following a data-driven method
it ensures a well-dimensioned system. The outcomes produce improved resilience to spatial variation in
demand, as well as fluctuations in the temporal intensity of the events.
In the sequence, this work is organized as follows: Section 5.2 introduces the problem statement and
demand modeling approach. Section 5.3 presents clustering-based partitioning methods. Section 5.4
focuses on the optimization of the decentralized network structure, followed by the analysis of results in
Section 5.5. To conclude, Section 5.6 overviews the core takeaways and discusses possible directions of
future research.

5.2 Demand-Driven Network Optimization
Networked aerial systems can enable a mobile infrastructure to support a multitude of applications involv-
ing the coverage of extensive areas, by having the capability of adapting in response to dynamic events.
However, UAVs have stringent energy constraints that limit flight endurance, imposing the need to opti-
mize the distribution of multi-UAV fleets.
Furthermore, considering missions are distributed over large areas and have a great degree of uncertainty
on spatial and temporal levels, it is important to establish a priori demand models in order to design sys-
tems with an adequate amount of vehicles and deployment locations so as to avoid over-dimensioned or
under-dimensioned systems, and promote fault-tolerance in dynamic scenarios. To that end, the following
establishes the problem statement, as well as the demand modeling approach.
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5.2.1 Problem Statement

Consider a heterogeneous fleet, letting V = {1, . . . ,K} represent the types of vehicles employed, and Vk,
define the subset of vehicles of type k. The fleet is composed ofmk vehicles of each k type, and the sum
of the cardinality of each subset Vk gives the total number of vehicles of the fleet. In this work, two types

48



of low-altitude UAVs are considered, namely multi-rotors and fixed-wing drones.
The discrete domain of aerial services tasks can be described using themathematical formalism from graph
theory, where in a graph, G = (N , E), the locations are represented by a set of nodes, N , and the paths
between locations are denoted by a set of edges, E . To formulate the network optimization problem in
a decentralized form, the set of locations N is partitioned into clusters to build partial subgraphs. Let
the objective function of the global problem, FG, be defined by the cumulative sum of the local problems
Fi(xi). The problem can then be stated as:

min
x

F1(x1) + F2(x2) + · · ·+ Fc(xc) (5.1)
where x = [x1, x2, . . . , xc] and c denotes the number of clusters. The core advantages of adopting a
decentralized approach consist of increased fault-tolerance and flexibility, as well as reduced computa-
tional burden. The local cost functions, which incorporate density-based and energy-related components
associated to the different vehicles, are formalized further along in section 5.4.
The principal goal is to optimize the type and distribution of UAVs in fleets able to perform on-demand
missions that are sparsely distributed over a geographical region, as exemplified in Fig. 5.2a.
Considering that geographical administrative boundaries are highly asymmetric, an unsupervised cluster-
ing approach is a well-suited approach to derive the structure of the fleets based on probabilistic demand.
To that end, the following presents the demand modeling approach for scenarios of interest.
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(a) Homogeneous with low workload level
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(c) Homogeneous with high workload level
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(d) Inhomogeneous with high workload level
Figure 5.4: Demand distribution comparison for a 5-day period: (a) and (b) homogeneous (uni-form), with low and high load, respectively; (c) and (d) nonhomogeneous, with low and high load,respectively;
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5.2.2 Demand Modeling

The demand of aerial services can be modeled as a stochastic process describing a spatiotemporal pattern.
For that purpose, this work employs a Poisson point process, which is widely used tomodel random events.
Applications include e.g. modeling occurrences of natural hazards such as earthquakes or wildfires, on
spatial and/or temporal levels, or representing the arrival of customer orders at a service provider [35].
In that sense, it is assumed that the requests, represented by location and request time, L(x, y, tR), are
independent random variables, which for a given time interval, T , have constant average spatial rates of
occurrence for a bounded area, A, and that the average rate (requests per time period) is constant.
The spatial demand is represented according to a discrete Poisson distribution, fPois, that models the
probability of a discrete number of requests, n, occurring in a time interval for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(5.2)

with the constant expected value, µs, depending on the spatial intensity of the demand and area size,
i.e., µs = λsA. The spatial intensity, λs, is the expected average number of tasks per unit area. The spatial
locations can be described with e.g., longitude, latitude coordinates or transformed into cartesian space.
In this context, the sampling of the Poisson distribution for several time intervals yields a demand profile
for a time horizon considered in the problem, for instance as is illustrated in Fig. 5.2b, for a forecast with a
5-day time horizon.
The temporal uncertainty of the demand is described by the variability in the interval of time between
consecutive requests, i.e. the interarrival times, T . In a Poisson point process these time increments are
independent and identically distributed random variables that follow a continuous decaying exponential
distribution. Then, the interarrival times, T , are obtained using the inverse of the cumulative distribution
function of the exponential distribution, [FExp]

−1, as follows:
FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0

µte
−µttdt = 1− e−µtτ

[
FExp(τ ;µt)

]−1
= − ln(1−τ)

µt
= T (5.3)

with µt denoting the average rate per time sampling, which is a function of the temporal intensity, λt,
and time window size, τ . The temporal intensity, describes the average number of tasks per unit time.
For instance, taking the example of Fig. 5.2b, a time interval of one day, T , with 8 mission requests, can
have a temporal intensity of 0.5 events per hour for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the Poisson distribution (5.2), for each event in
that interval T , the interarrival time is determined through (5.3) based on a random uniform distribution,
with τ ∼ Unif(0, 1). Note that the sum of interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.
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Load Level

To establish different load levels, high and lowworkload scenarios are modeled by selecting distinct spatial
and temporal intensities. The definition of these parameters is intrinsically related to the process under
study and the time horizon considered. Herein, the process will be considered stationary, i.e. the average
spatial and temporal intensities do not vary throughout the time-horizon (forecast window). This premise
is valid assuming demand scenarios that occur in short periods in a specific region. Nevertheless, in re-
ality, spatial and temporal intensities are expected to vary depending on the application, seasonality and
geographic region.
Since aerial services are highly constrained by the limited autonomy of UAVs, the way spatial intensity re-
lates to the area covered plays an important role in establishing decentralized multi-UAV networks. There-
fore, testing different workload levels is essential for the analysis of the dimensioning problem because it
drives the total number of missions that have to be performed and in result influences fleet size and the
operation area of the fleet. Fig. 5.3 depicts distributions with different intensity levels used to simulate
high and low workloads.

Process Type (homogeneous vs. nonhomogeneous)

The spatial structure of Poisson point processes can have distinct distributions, which for this problem
influences how the mission requests are spread over the area of interest. For the homogeneous case,
the spatial coordinates (x, y) are generated by a uniform distribution within the limits of the specified
bounded area A, defined as a polygon or a multi-polygon. In turn, for the nonhomogeneous or inhomoge-
neous case, the spatial coordinates can be generated by a spatially varying deterministic intensity function
Λ(x, y), through a thinning procedure of a homogeneous point process of intensity λmax, where points are
eliminated or retained according to a probability which depends on spatial location, p(x, y) [35]. An ex-
ample of the difference between homogeneous and nonhomogeneous processes is presented in Fig. 5.4
with the following intensity function for the nonhomogeneous case:

Λ(x, y) = 2(x2 + y2) (5.4)
p(x, y) = Λ(x, y)/λmax (5.5)

In this context, these differences allow simulating in a generic sense e.g. patrolling missions where a large
area has to be monitored periodically (homogeneous), or active fire monitoring scenarios where mission
requests aremore likely to be concentrated in a particular area (nonhomogeneous). Hence, for comparison
purposes the thinning process is implemented with a stop criterium to halt when the number of requests
matches the load level from the Poisson distribution, enabling the evaluation of different processes with
the same load level.
In this way, the parametrization of the load level and process type allowsmodeling the demand and generat-
ing the mission requests for simulation. Considering different vehicle types have distinct flight endurance
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characteristics, the density of mission requests will impact the optimization of the configuration of multi-
UAV fleets. For instance, the high maneuverability is one advantage of multi-rotor drones, however this
reduces the flight endurance, thus restricting missions to a limited range. Conversely, fixed-wing drones
have the benefit of harnessing the aerodynamic lift, which enables longer flights. Therefore, for short-
range missions in an area with higher number of missions multi-rotors are more well-suited, whereas for
performing long-range missions fixed-wing drones are a better alternative. For these reasons, the way the
requests are spread has to be subsequently estimated.

Demand Density

To measure the density of requests per unit area, i.e. an estimate of the spatial intensity function of
the point pattern, this work uses kernel density estimation (KDE) based on the convolution of isotropic
Gaussian kernels [36–38].
Let L = {ℓ1, . . . , ℓn} denote the request locations in bidimensional (2D) space, belonging to a bounded
area A. The fixed-bandwidth kernel density estimate of the intensity function, i.e. the local intensity
estimate at location pi, is given by:

λ̂(pi) =
1

nh2

n∑
i=1

κ

(
pi − ℓi

h

)
e(pi)

−1 pi ∈ A (5.6)

where κ denotes the 2D Gaussian smoothing kernel, h > 0 is the smoothing parameter (i.e. the band-
width), and e(pi) represents an edge-correction factor [39]. Note that herein the temporal data is not
considered for density estimation, as the multi-UAV fleets are to be dimensioned for the period of the
time horizon, in this case based on a 5-day forecast. Recalling Fig. 5.4 comparing variable spatial distri-
bution and load levels, the density estimation enables identifying zones with a higher number of mission
requests as described by the color schema.
Albeit having a greater computational cost than alternative density estimation techniques, KDE has the
benefit of considering the spatial distribution over complete neighborhoods in the region of interest. Con-
versely, proximity-based core measures tend to produce myopic density estimates, biased by local infor-
mation. The following sections delve deeper into this issue, and outline the proposed demand-driven
clustering approach designed to: i) build decentralized multi-UAV networks and ii) design the configura-
tions of multi-UAV fleets.

5.3 Clustering-based Graph Partitioning
The problem of deploying UAVs to perform surveillance or monitoring tasks over extensive areas lends
itself to be easily represented by a graph. However, if the problem has a high number of aerial services to
perform, the subsequent resource allocation problem will become very complex, if feasible at all. Indeed,
due to the energy constraints of aerial platforms, the universe of discourse of the entire problem results
in many unfeasible solutions in practice.
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To handle this issue, a decentralized approach is proposed based on clustering methods, which divides the
problem into multiple subgraphs, enabling solving simpler problems in parallel by limiting the size of the
search space. From an optimization standpoint the main advantage is that the search of feasible solutions
is more effective at a reduced computational burden. In addition, this approach increases control over
fleet dimensioning and design, whilst making the decentralized system more flexible and fault-tolerant.
Clustering algorithms are generally unsupervised learning techniques that allow grouping data according
to different objectives [40]. This allows dividing the problem space using characteristics intrinsic to the
data. Herein, based on the demand-driven modeling approach adopted, the interest centers on centroid-
based clustering and hierarchical clustering.
While centroid-based clustering methods, e.g. K-means[41, 42] or Fuzzy C-Means [43–45], focus on par-
titioning the space in a balanced volume per cluster in terms of area coverage, this approach disregards
cardinality, shape and density of each cluster, i.e. if there are many or few aerial tasks to perform, how are
these distributed and concentrated in space, respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [46, 47] or hierarchical extensions HDBSCAN [48], concentrate on
extracting cluster structures without restricting the maximum cluster volume.
In the context of the problem, considering flight endurance limitations, volume-constrained partitioning
is critical to ensure adequate area coverage of the region of interest. In turn, to determine the fleet con-
figurations, proximity-based density and hierarchical information are important to select suitable vehicle
types. Thus, combining both alternatives is essential, but given the spatiotemporal uncertainty in the data,
a soft clustering approach is better suited to address this problem.
In that sense, this work proposes a decentralized distribution framework based on fuzzy clustering, which
incorporates density and hierarchical information, that enables dimensioning and designing a flexiblemulti-
UAV fleet system capable to adapt to stochastic demand. More specifically, the first stage consists in a
fuzzy partitioning policy based on distance-based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering algorithm [49]. Subsequently, the second stage
concerns deriving clusters within each main subgraph using HDBSCAN based on proximity-based density
information, namely mutual reachability distance and hierarchical structure. The following describes the
graph model and the main components of the proposed three-stage clustering algorithm, and how these
relate to the proposed framework for dimensioning and design of multi-UAV fleets.

5.3.1 Graph Model

The demand dataset is defined in the LLA (Latitude, Longitude, Altitude) referential and are subsequently
converted to the NED (North, East, Down) coordinate system. The demand density at each location is
estimated using the KDE method at each service waypoint. Given a set of N samples, and a data vector
zk = [X,Y, Z, λ̂]T , defined by the NED coordinates and KDE-based density, let Z = [z1, z2, . . . , zN ] define
the dataset of demand waypoints of the aerial services to be performed. The proposed methodology
employs a two-stage clustering algorithm, thus the graph model undergoes transformations throughout
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the algorithm. The following definitions relate the key components in this demand-driven approach.

Distance Measures

Mahalanobis distance is employed in the GK algorithm to allow for clusters with different shapes
but identical area;
Core distance based on the Euclidean distance to the n-th neighbor, is used to compute the mutual
reachability distance (MRD), to retrieve proximity-based density estimates and hierarchical structure
of the clusters.

Demand Density Estimates

KDE density conveys the number of missions in the region of interest;
MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section 5.4.

5.3.2 Gustafson-Kessel Fuzzy Clustering

To derive fuzzy data partitions from a set of locations N , the Gustafson-Kessel (GK) fuzzy clustering al-
gorithm clusters each data point based on centroid-based distances, according to a degree of member-
ship, µik, forming the fuzzy partition matrix, U = [µik]. This allows locations at the boundary of each
clustered region to belong to more than one fuzzy set. The algorithm computes the clusters centers, vi,
as:

vi =

∑N
k=1(µik)

mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (5.7)
defining the matrix of cluster centers V = [v1,v2, . . . ,vC ]. The overlap between clusters is given by the
fuzziness parameter, m ∈ [1,∞), with the lower bound equal to 1 corresponding to a hard partition. The
number of clusters, C , is defined heuristically as a function of the area to be covered, and the fuzziness
parameterm, through a grid search procedure.
The GK algorithm uses an adaptive distance measure based on the Mahalanobis distance, a squared inner-
norm, given by:

D2
ikAi

= (zk − vi)
TAi(zk − vi) (5.8)

whereAi = |Fi|
1
nF−1

i is a norm-inducing matrix based on the fuzzy covariance matrix, Fi, given by:

Fi =

∑N
k=1(µik)

m(zk − vi)(zk − vi)
T∑N

k=1(µik)m
(5.9)

The GK algorithm, in addition to U and V, also uses the matrices A = (A1, . . . ,AC) as optimization
variables, to allow varying the shape of each cluster while maintaining a fixed volume, ensuring each multi-
UAV fleet will cover equivalent areas. Thus, the clustering criterion to minimize is given by the objective
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function:
J(Z;U,V,A) =

C∑
i=1

N∑
k=1

(µik)
mD2

ikAi
(5.10)

The partition matrixU is updated in a iterative process, by updating the membership degrees, computed
as:

µik =
1∑C

j=1

(
DikAi

DjkAi

)2/(m−1)
(5.11)

halting if the improvement on the cost function satisfies a given tolerance, or if the maximum number of
iterations is reached.
By applying this technique it is possible to partition the problem and build decentralized networks with
fuzzy boundaries for increased flexibility. In the sequence, within each cluster we aim to extract the
demand structure so thatmulti-UAVfleets are designedwith suitable configurations, i.e. howmany drones
and of which type, e.g. fixed-wing or multi-rotor.

5.3.3 Hierarchical Density-based Clustering

Considering that multi-rotors have limited flight endurance, these are better suited for short-range mis-
sions, even if within that range there exists a high number of service requests. Conversely, fixed-wing
drones can serve long-range missions more effectively. In that sense, the nature of the demand influences
the selection of type of vehicles within each fleet.
To match the demand structure, i.e. if it is sparsely/densely distributed, to better suited fleet configu-
rations, this work employs partly a density-based method, the HDBSCAN. The following describes the
central aspects of this method, while subsequent sections focus on the algorithm proposed to address
this problem. First, the problem space is transformed to represent density information, through a proxim-
ity measure termed mutual reachability distance, dmreach. To that end, for each zk ∈ Z a density estimate
is computed, denominated the core distance to the n-th nearest neighbor [50], which for the sake of sim-
plicity we represent as dcore, and without loss of generality since n is an input parameter. With the mutual
reachability distance between sample j and k given by:

dmreach(zj , zk) = max
{
dcore(zj), dcore(zk), d(zj , zk)

} (5.12)

a weighted graph based on the MRD is established for Z, from which a minimum spanning tree (MST) is
computed [51].
To extract the cluster structure, a dendrogram is constructed from theMST of graph of the mutual reacha-
bility distance, GR = (N ,A). Subsequently, based on a specifiedminimum cluster size the cluster hierarchy
is condensed to obtain a locally aggregated version of the demand. However, the hierarchical approach
alone does not suit well this problem.
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5.4 Decentralized distribution of m-UAV fleets
The first stage of the proposed algorithm (Algorithm 1) consists of the partitioning of the problem space
using fuzzy clustering to create decentralized networks described by subgraphs. Secondly, following a
decentralized approach, the procedure to extract hierarchical structure of the inner-clusters applies to the
set corresponding to each fuzzy cluster, denoted by Zi with i = 1, 2, . . . , C . Then, having density-based
inner-clusters, the main goal is to design the fleet configurations with the appropriate characteristics to
respond to demand. To that end, recall the global objective function (5.1). For each operating area, i.e.
each fuzzy cluster, the local cost, Fi is evaluated by:

min
∑
k∈V

∑
m∈Vk

∑
(i,j)∈A

dijx
k,m
ij +

∑
k∈V

∑
m∈Vk

ekvk,m (5.13a)

s.t. xk,m
ij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ V, ∀m ∈ Vk (5.13b)

vk,m ∈ {0, 1} , ∀k ∈ V, ∀m ∈ Vk (5.13c)
with the binary decision variables representing the allocation of a vehicle in a inner-cluster, xk,m

i,k , that
is 1 if vehicle m of type k is allocated, or null otherwise, and the deployment of vehicle m of type k,
vk,m, that is 1 if a vehicle is deployed and assigned a cluster, and zero otherwise. The objective function
balances two goals, namely the allocation of best suited vehicles for each demand density structure based
on distance, dij , and the minimization of energy expenditure, accounting for a energy cost, ek, for each
vehicle deployed, vk,m.

5.4.1 Cluster Optimization and Validity Conditions

Operational areas can not violate minimum service levels, which relate to the maximum vehicle range and
expected demand, λ. Thus, the area of the region of interest, A, has to be divided into equivalent-sized
clusters, according to the operational area ratio given by γ = A ·λ/maxrange. Thereby, the number of clus-
ters can be computed heuristically, as C = γ ·ms, withm representing the overlap between clusters, and
where s denotes a safety/redundancy parameter. This allows increasing the flexibility and fault-tolerance
of the networked system, depending on the application requirements. Since m ∈ [1,∞) with 1 corre-
sponding to a hard partition, for s > 0 the redundancy of the system is increased, because the number
of clusters is overdimensioned. In turn, for s < 0 the system will be less flexible as with constant overlap
between clusters, the number of clusters decreases, the cluster volume increases. Since the areas to be
covered expand, the number of vehicles required tomeet theminimum service level also increases, but the
ability to share resources does not, so the system will be less capable of adapting to demand fluctuations.

5.4.2 Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability distance, this estimate of local density is lever-
aged to determine the type of vehicle that should be allocated to that aerial service. Asmentioned through-
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out this work, multi-rotors (MR) are preferential for short-distance missions, whereas fixed-wing (FW)
drones will be preferentially allocated to long-distance tasks. To build solutions for fleet configurations,
the average of the MTS weights allows assessing if the tasks are in a dense/sparse area, which enables
knowing if a MR or a FW should be selected, respectively. When vehicle maximum flight endurance is
exceed, additional aerial vehicles are added.
Therefore, with this iterative process, solutions for each cluster can be composed by a single type of
vehicle, e.g. either fixed-wing or multi-rotor drones, or result in heterogeneous configurations with both
types of vehicle in the same multi-UAV fleet. By optimizing the types of vehicles deployed according the
to the nature of the demand, and by having fuzzy overlap between clusters, the solutions will allow sharing
of resources between neighboring regions to manage fluctuations over time in demand, and consequently
in the fleet load level.
Algorithm 1: Demand-driven clustering for multi-UAV networks
data :Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples; S , scenario parameter dictionary

zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;
input :m, overlap degree between clusters; γ, operational area ratio; n, core distance parameter, cmin, minimum cluster size
output : ZC , clusters, v, clusters centers,U, partition matrix;

1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (6.3.1)
3 for Z do
4 compute fuzzy partition with C clusters and fuzzinessm;
5 v,U,
6 stage 2. extract inner-cluster density structure with MST (5.3.3)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (5.12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (5.4.2)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost
14 evaluate globalCost;

5.5 Results
This section examines a proposed case-study based on real locations from rural areas in the central re-
gion of Portugal, where there is typically increased fire hazard. The demand was modeled as outlined in
section 5.2. For assessment of the proposed clustering framework, the scenarios presented in Fig. 5.4
were tested, though special attention was given to the analysis of a case resembling an active fire moni-
toring mission (i.e., inhomogeneous with high workload). For this approach to dimensioning and design of
multi-UAV fleets, the deployment/land points are not pre-established because in real contexts these can
be executed by mobile operational teams, thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire monitoring scenarios is mainly due to higher risks
for populations in wildland-urban interfaces, or because some areas are more susceptible to phenomena
of extreme fire behavior.
The stages of the proposed algorithm are illustrated in Fig. 5.5, for an example of an inhomogeneous high
workload case. Observing Fig. 5.5c representing the GK fuzzy clusters and the global mutual reachability
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Figure 5.5: Example of the proposed framework: (a) demand modeling simulationfor fire monitoring scenario; (b) decentralized network with fuzzy partitioning.

graph, there is an higher density in C1 in comparison to C2. This information is clearly valuable to select
the vehicles for each fleet.
Considering fire monitoring missions, a positive safety parameter, s, is advisable, to provide the system
additional flexibility and redundancy in emergency operation scenarios that are highly dynamic. With the
overlap between clusters, the fleets can share resources as the situation develops. For comparison, herein
the situations analyzed consider two clusters. Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The maximum range was set for MR as 4000 and
for FW as 8000.
Tables 5.1 and 5.2 present selected fleet design results, showcasing the influence of varying the degree of
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Table 5.1: Optimization results of selected network models for light-load scenarios (homogeneous case).
Clusters (C) m Aerial Vehicles C1 Cost C1 (F1) Aerial Vehicles C2 Cost C2 (F2) Global Solution (FG)

2
1.1
1.2
1.5

MR(1), FW(2)
MR(1), FW(2)
MR(0), FW(2)

20959
20959
17306

MR(0), FW(2)
MR(0), FW(2)
MR(0), FW(3)

17432
17432
23809

38391
38391
41115

Table 5.2: Optimization results of selected network models for heavy-load scenarios (nonhomogeneous case).
Clusters (C) m Aerial Fleet C1 Cost C1 (F1) Aerial Fleet C2 Cost C2 (F2) Global Solution (FG)

2
1.1
1.2
1.5

MR(1), FW(4)
MR(1), FW(3)
MR(1), FW(2)

37872
24554
22794

MR(1), FW(1)
MR(1), FW(1)
MR(1), FW(4)

11127
9747

38152

48999
34301
60946

overlap, i.e. the redundancy in the system, for light and heavy load scenarios, respectively. While cluster
C1 has a low reachability level (Fig. 5.5c), it has high cardinality, thus a combination of vehicles achieves the
best trade-off. In turn, the sparsity in cluster C2 leads to fleets with mostly fixed-wing drones. Attending
to the results in both scenarios, varying the degree of overlap does not evidence particular improvement in
light-load cases, but can be beneficial if flexibility is desired. For heavy-load cases, the results demonstrate
that increasing redundancy (m = 1.2) can create systems that are more efficient, but high fault-tolerance
(m = 1.5) implies a cost increase.
Without loss of generalization, this demand-driven approach can be applied to a multitude of aerial ser-
vices, by establishing different parameters according to the application requirements.

5.6 Conclusion
This paper proposes a framework for decentralized distribution of multi-UAV fleets for on-demand aerial
services, addressing strategic and tactical decision-making related to dimensioning and design of aerial
networks. The proposed clustering-based approach is threefold: i) it derives decentralized networked
systems using fuzzy clustering to ensure adequate area coverage in the region of interest; ii) within each
cluster, inner-clusters based on hierarchical density structure are extracted to dimension the multi-UAV
systems with adequate vehicle-types; iii) fleet configurations are designed with the required number of
UAVs to meet the demand. The overarching benefit of handling data uncertainty using a soft clustering
approach is that it results in increasing the flexibility and fault-tolerance of the networked system.
Following this dimensioning and design strategy, to delve into actual operationalization of fleet manage-
ment, multi-UAV mission planning can be framed into well-conditioned resource allocation and schedul-
ing problems. The proposed method with fuzzy boundaries opens opportunities to research cooperative
strategies, e.g. to balance workload between neighboring regions. Future formulations of themission plan-
ning of multi-UAV fleets shall also evolve to include different priority levels and time-windows constraints,
to approximate the study scenarios to decision-making problems faced in real contexts.
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6.1 Introduction
The proliferation of unmanned aerial vehicles (UAVs) is driving a broad array of novel civilian applica-
tions, e.g., drone delivery, search and rescue, or environmental monitoring [30, 52]. In that sense, there
is increasing research on aerial networked systems towards creating resilient mobile infrastructures, that
can adapt to dynamic changes in real-time [53, 54]. In general, multi-robot systems encompass single or
multi-task robots performing single-robot tasks, or advanced configurations with robot coalitions where
single/multi-task robots combine efforts to performmulti-robot tasks [55]. Recently, several contributions
have proposed the use of multi-UAV systems to perform collaborative or cooperative tasks [56–58].
This work focuses on a scope of applications in which UAVs have to perform on-demand missions where
tasks are distributed over large areas with variable sparsity structure. Example scenarios are, e.g., wild-
fire aerial surveillance, or environmental monitoring in remote areas. Due to the energy constraints of
aerial vehicles, this leads to the need to have decentralized multi-UAV fleets, which may encompass het-
erogeneous robots according to demand requirements. In this context, this work targets tactical aspects
concerning the coordination of decentralized multi-UAV fleets, by establishing a cooperative framework
that devises flexible systems resilient to demand variations. More specifically, the proposed approach
explores cooperation between neighboring network entities to enable the sharing resources to address
specific tasks. In practice, tasks can be exchanged between different multi-UAV to optimize overall cost.
The exchange strategy is realized over an implicit communication method based on ant colony optimiza-
tion. This novel coordination framework contributes to the state-of-the-art by providing an integrated
optimization approach that reconciles the various elements of resilience, i.e. robustness, redundancy and
resourcefulness [53, 59–61]. As outlined in Fig. 6.1, this framework (i) devises robust decentralized sys-
tems composed of multi-UAV fleets, (ii) allows for cooperation through redundancy within each robot
team and also neighboring teams, and (iii) is able to adapt the areas of operation of each system depend-
ing on demand variations.
Herein, the proposed method is used for coordination in the scope of the task allocation problem, but
without loss of generalization, this optimization approach can be extended to related planning problems
in networked multi-robot systems, e.g., task scheduling, vehicle routing and path planning.

Fuzzy Clustering Decentralized 
Network Model

Cooperative 
exchanges

C1 C2 C3

Parallel Ant Colony 
Optimization

Figure 6.1: Framework for cooperation of multi-UAV systems: decoupled approach based on fuzzyclustering and ant colony optimization, that enables task exchanges between neighboring fleets al-lowing balancing workload, while considering vehicle motion and energy constraints in the path op-timization. First, fuzzy partitioning to build decentralized subgraphs with a reasonable redundancylevel. Second, cooperative mechanism allows exchanging workload requests between clusters, i.ethe multi-UAV fleets, which is optimized to derive routes and scheduling for task allocation.
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6.1.1 Related Work

Task assignment problems have a wide range of applications, spanning from classical operations research
domains to more recent applications in computing systems. In multi-robot systems, the development of
coordination strategies can be formally casted in the domain of combinatorial optimization. These are
termed multi-robotic task allocation (MRTA) problems and use several variants of the task assignment
problem [62]. However, depending on problem complexity, these approaches can have prohibitive com-
putational times to yield an optimal solution, and for NP-hard problems can not be solved in polynomial
time. Several relaxation approaches have been proposed to allow solving these problems with approxi-
mation methods that provide suboptimality guarantees [63], yet the computational time associated with
these algorithms can prevent its use in applications with real-time requirements. To mitigate this and
improve robustness, decentralized [64, 65] and distributed [66] optimization approaches have received
considerable interest, as these enable diminishing the computational burden significantly, whilst allowing
enhanced fault-tolerance.
In that sense, for coordination of large-scale robotic systems, relevant research to address these issues has
been developed in the realm of swarm robotics [67]. Since on-board computation and communications
have to be used rationally due to the burden these have on energy consumption, centralized methods do
not scale well in respect to these aspects. For this reason, swarm intelligence approaches tend to favor
decentralized frameworks and bio-inspired algorithms [68, 69], in order to enable real-time realizations
of coordinated collective behavior. While from an optimization standpoint metaheuristics do not provide
optimality guarantees [70], these powerful algorithms cope well with nonconvex problems, by harnessing
exploration and exploitation strategies to escape local minima and navigate the search space to find well-
suited solutionswith limited computation effort. This opens the spectra of application to problemswithout
convexity guarantees, while proving an efficient solution for real-time deployments.
To decentralize the problem, the global set of tasks has to be divided, which can be framed with the set
partitioning problem for mutually exclusive groupings or under the sensor coverage problem to embed
redundancy. However, both problems are know to be NP-hard [71]. To address this issue, clustering-
based partitioning methods are used in a wide variety of domains [40], and distance-based algorithms are
generally well-suited for problems with spatial dependencies.
Regarding cooperative coordination methods, auction or market-based approaches have also received ex-
tensive interest [72, 73], being generally derived from classical multi-agent systems methods and decision
theory. Negotiation mechanisms are especially important for cooperation of multi-task robots (MT) and
in multi-robots tasks (MR) contexts.
Applications for multi-UAV surveillance tend to focus more on operational aspects and motion coordina-
tion, typically performing area partitioning using mutually exclusive areas for each robot, and designing
algorithms for patrolling [74, 75], ensuring adequate coverage in the areas of interest. Conversely, as
mentioned previously, in this work the focus is on a tactical level, focusing on task planning decisions for
deployment of multi-UAV fleets in different demand scenarios, targeting both availability and costs;
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6.1.2 Proposed Approach

The potential for deployment ofmulti-UAV systems in safety critical applications, e.g., wildfire surveillance,
or search and rescue, demands the development of resilient robotic systems, capable to adapt in a timely
manner as events unravel. In that sense, several constraints inherent to these systems and application
requirements have to be considered for devising adequate coordination strategies.
To that end, this work proposes a coordination framework for task planning for multi-UAV fleets based
on a decentralized optimization approach that integrates redundancy efficiently by allowing exchanges
in workload requests between neighboring aerial networks. The core novel idea presented in this work
concerns the dynamic exchange of workload requests between neighboring decentralized aerial networks,
by allowing the exchange in task allocation for decentralized multi-UAV systems. The contributions of this
work are twofold.
First, to embed redundancy in the system without scaling up infrastructure cost excessively, this work
employs fuzzy partitions that cope with data uncertainty through a possibilistic approach. Based on the
demand-driven method proposed in [76], that dimensions and designs adequate heterogeneous multi-
UAV fleets, this work proposes leveraging fuzzy partitions to assign tasks to each local network of UAVs,
whilst determining which tasks may be exchanged with neighboring fleets.
Second, to coordinate task planning across fleets, a decentralized ant colony optimization algorithm is
devised to allow exchanges between neighboring networks based on implicit communication based on the
degrees of membership identified with the fuzzy partitions and pheromone levels. Considering demand
for aerial tasks in each area can result in distinct workloads, the ability to evaluate solutions cooperatively
allows balancing workload between fleets and minimize global cost.
The investigation of the case-study inspired in real-world scenarios reveals the benefits of increasing
redundancy sparingly, as well as promoting cooperation between multi-UAV fleets, demonstrating that
improved resilience of the system does not have to escalate costs prohibitively, making the approach
well-suited for aerial support operations.
Following this introduction, the remainder of this work is structured as follows: Section 6.2 establishes the
problem formulation and specifications. Section 6.3 introduces the fuzzy partitioning schema proposed
for decentralization and the cooperative strategy used for coordination. Section 6.4 presents a case-study
with several variant configurations along with the performance evaluation measures. Section 6.5 explores
the simulation results in detail. Section 6.6 highlights the main conclusions and discusses directions of
future work.

6.2 Networked Aerial Systems
Networked aerial systems have particularly demanding energy constraints, with the need to recharge or
refuel limiting the range of operation. Moreover, to adapt these systems to perform cooperative tasks,

64



the flight endurance of the vehicles is severely impacted by the energy drain associated with the commu-
nications between network entities. Thus, to leverage different vehicle characteristics, this work includes
heterogeneous aerial vehicles, e.g., multi-rotor and fixed-wing drones, to explore distinct advantages in
cooperative scenarios.

6.2.1 Problem Statement

Consider a discrete set of aerial services tasks, D, sparsely distributed over a region of interest, with
demand profiles modeled with spatiotemporal point patterns based on Poisson distributions [35], that
may vary across different areas. Fig. 6.2 exemplifies this type of scenario, presenting the spatiotemporal
distribution of aerial tasks, along with the corresponding demand profiles. It is assumed that several multi-
UAV fleets are to be deployed to service these tasks, and have capacity to fulfill the nominal forecasted
demand. To handle expected variations in demand, fleets distributed over neighboring areas can cooperate
to satisfy mission objectives and balance the workload.
Consider a set the multi-UAV fleets, C = {1, 2, . . . , c} with a given number of fleets, c, associated with
demand-based clustering of a set of requested aerial tasks D. For each fleet, let the K types of vehicles
employed be represented through set V = {1, . . . ,K}, and let set Vk denote the subset of vehicles of
type k. The fleet is composed of a total of m aerial vehicles, given by the sum of the cardinality of each
set Vk, withmk vehicles of each k type.
The problem is framed in the class Single-Task robot, Single-Robot task Time-extended Assignment (ST-
SR-TA) [55], where each robot is allocated to one task at a time, and each task requires one robot to
be completed. With the number of tasks, n, exceeding the number of robots, m, this poses as a time-
extended assignment, where each drone may have to attend to more than one task, resulting in essence
in a scheduling problem, known to be strongly NP-hard [77]. This problem is also related to task allocation
in parallel machine scheduling formulations [78].

6.2.2 Mathematical Modeling

For coordination of task planning among the fleets, the objective of the decentralized optimization prob-
lem is to minimize the overall cost function, f , given by the cumulative sum of the local cost functions, fi,
of each multi-UAV fleet, i ∈ C = {1, 2, ..., c}:

min
x

f(x) ≜
∑

fi(xi) (6.1)
with the decision variables represented as x = [x1, x2, . . . , xc], where c denotes the number of fleets. The
cost of each fleet, fi results from a time-based distance measure that encodes the distances that need to
be travelled for each request.
To address the coordination of the task allocation problem across the decentralized system, the main
objective is to enable the cooperation between neighboring fleets. In that sense, the scheduling problem
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can be described by:
R || Cmax (6.2)

that in this context stands for optimizing the makespan of unrelated parallel fleets, i.e. to minimize total
operation time of the multi-UAV fleets for a given time period T . This is an important goal for task al-
location as responsiveness is one key feature in resilient networks. Furthermore, this objective function
serves the intended cooperation strategy, as the minimization of makespan has the effect of balancing
the workload across different multi-UAV fleets. In general terms, the processing time of a task can be
considered the sum of the average travel time of a given vehicle to a task location and a specified task

(a) Spatiotemporal distribution
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(b) Demand profiles
Figure 6.2: Example of forecasted tasks over a region of interest. Illustration ofexpected variations in demand: a) spatiotemporal distribution with modeling dif-ferent intensity distributions depending on the area; b) demand profiles forecastedfor 5 time intervals. The aerial tasks are color-coded by area and the color contrastrepresents the corresponding time interval the tasks arrive.
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duration, which is dependent on the application.
Assuming that for eachmission theUAVs can servicemore that one task in a sequential order, the optimiza-
tion of the paths results in a routing problem. Therefore, for each fleet the problem can be approached
as an in-schedule dependent (ID) allocation of class ID [ST-SR-TA] [79], that can be modeled as a multi-
Vehicle Routing Problem (m-VRP) [80].
To model the discrete domain of aerial services tasks using the mathematical formalism from graph theory,
a graph, G = (N ,A), describes the task locations by the set of nodes,N , and represents the paths between
tasks through the set of arcs,A. For computational simplicity, the set of nodes includes the set of locations,
L and the set of recharge locations, R, thus N = L ∪ R. To consider a heterogeneous fleet, let V =

{1, . . . ,K} represent the types of vehicles employed, and Vk, define the subset of vehicles of type k. The
fleet is composed by mk vehicles of each type, and the sum of the cardinality of each set Vk gives the
total number of vehicles of the fleet:

K∑
k=1

= mk (6.3)
Then, the static formulation of this energy-constrained heterogeneous vehicle routing problem can be
stated as follows:

min
∑
k∈V

∑
m∈Vk

∑
(i,j)∈A

dijx
k,m
ij +

∑
k∈V

∑
m∈Vk

ekvk,m (6.4a)

s.t.
∑
k∈V

∑
j∈N

xk
ij = 1, ∀i ∈ L (6.4b)

∑
i∈N

xk
ih −

∑
j∈N

xk
hj = 0, ∀h ∈ L,∀k ∈ V (6.4c)

vehicle constraints :∑
(i,j)∈A

dix
k,m
ij ≤ ck, ∀k ∈ V, ∀m ∈ Vk (6.4d)

xk
ij(bi + tkij − bj) ≤ 0, ∀(i, j) ∈ A, ∀k ∈ V (6.4e)

energy constraints :∑
i∈N

xk
i,r = 1, ∀k ∈ V, r ∈ R (6.4f)

∑
k∈V

∑
(i,j)∈A

tkijx
k
ij ≤ 0.8fk (6.4g)

decision variables :

xk,m
ij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ V, ∀m ∈ Vk (6.4h)

vk,m ∈ {0, 1} , ∀k ∈ V, ∀m ∈ Vk (6.4i)

The locations of task requests and start locations are based on the LLA (Latitude,Longitude, Altitude)
referential, which are subsequently converted to the NED (North, East, Down) coordinate system. The
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distance between nodes i and j, dij , that has to be traveled by the aerial vehicles, is modeled as a cartesian
distance in 3-dimensional space, with respect to theNED reference frame of the position of thewaypoints:

dij = ||pi − pj || (6.5)
The travel time, tkij , is a function of vehicle-type and is computed as tkij = dij/sk , relating the distance, dij ,
to a node with the average travel speed, sk, of the vehicle of type k. Note this naive simplification is pro-
posed for task allocation purposes only, and is employed similarly to flight leg duration estimates common
in aircraft scheduling problems [81]. The incorporation of more realistic assumptions and uncertainties
should to be integrated downstream in path planning with more accurate vehicle models and constraints.
The objective function balances two objectives, namely the optimal routing of vehicles and the optimal
resource allocation. This is performed byminimizing the distance travelled, dij , and the number of vehicles
used through the inclusion of the energy expenditure parameter, accounting for the energy cost, ek, for
each vehicle m of type k deployed, vk,m. To guarantee the problem of class single-task robot and single-
robot task (ST-SR), constraint (6.4b) specifies that each location can only be visited once by one vehicle,
irrespective of k type. In turn, (6.4c) assures that each vehicle arriving at location h, also departs from that
location. The vehicle constraint in equation (6.4d) enforces that each vehiclem of type k does not exceed
its capacity ck when serving capacity demand, di. Additionally, (6.4e) assures that for each subroute the
travel time between node i and j is accounted for. The travel time, tkij , is a function of vehicle-type and
is computed as tkij = dij/sk, relating the distance, dij , to a node with the average travel speed of the
vehicle, sk. The energy constraints are defined in equations (6.4f–6.4g). To assure each vehicle returns to
a recharge location, constraint (6.4f) states that the final destination has to be a reset node, rn in R. For
safety reasons, constraint (6.4g) establishes that each route of vehicles of type k can only operate until a
vehicle is within 80% of its maximum flight time,fk. Regarding the binary decision variables (6.4h–6.4i),
the allocation of a vehicle to a route, xk,m

ij , assumes the value of 1 if vehiclem of type k travels from node
i to j, and is null otherwise. The deployment of vehiclem of type k, vk,m, is 1 if a vehicle is deployed and
assigned a route, and zero otherwise.

6.3 Coordination of Multi-UAV Fleets
The coordination of multi-UAV systems requires information exchange between vehicles, but since the
energetic autonomy of these vehicles is severely constrained, cooperation algorithms have to consider
communication parsimony and efficiency. To address this problem, this work proposes decentralizing the
problem using a fuzzy partitioning policy based on distance-based fuzzy clustering. In a first stage, this
allows organizing the network supergraph into several subgraphs with less instances, making the problem
more tractable. Subsequently, the task allocation problem is addressed using a cooperative algorithm
which employs decentralized ant colony optimization. To implement a cooperative strategy that allows the
ability of sharing resources, an exchange mechanism which relies on implicit communication is proposed.
The sequence details the methods and algorithms of the proposed coordination framework outlined in
Fig. 6.1.
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6.3.1 Fuzzy partitioning policy

Fuzzy decision-making approaches based on possibility theory provide flexible models that encapsulate
the uncertainty that characterizes the existence of ambivalent class definitions [82]. In real scenarios,
geographical boundaries are often highly irregular, so the definition of operation areas should follow a
data-driven approach. To deal with data uncertainty, this work employs the Gustafson-Kessel (GK) fuzzy
clustering algorithm [49], to derive fuzzy partitions from the dataset of aerial tasks D. The dataset matrix
of the set of locations of the aerial tasks, Z = [z1, z2, . . . , zN ]T , is composed of N samples, with each k

sample, zk = [X,Y, Z]T , describing the coordinates of the task locations. In contrast with hard partitions
that divide data into mutually exclusive sets, in fuzzy partitions each data point belongs to a cluster with a
degree of membership µik, building the fuzzy partition matrixU = [µik]. The overlap between clusters is
controlled by the fuzziness parameter,m ∈ [1,∞), with the lower bound corresponding to a hard partition.
In a iterative procedure the GK computes the distance between each sample, zk and the cluster centers,
vi, through an adaptive distance measure, namely the Mahalanobis distance, a squared inner-norm, given
by:

D2
ikAi

= (zk − vi)
TAi(zk − vi) (6.6)

whereAi = |Fi|
1
nF−1

i is a norm-inducing matrix based on the fuzzy covariance matrix, Fi, given by:

Fi =

∑N
k=1(µik)

m(zk − vi)(zk − vi)
T∑N

k=1(µik)m
(6.7)

The cluster centers, vi, which compose the matrix of cluster centers V = [v1,v2, . . . ,vC ], are computed
as:

vi =

∑N
k=1(µik)

mzk∑N
k=1(µik)m

, i = 1, 2, . . . , c (6.8)
with c being themaximumnumber of clusters, which can be determined heuristically depending on vehicle
characteristics and the area to be covered. The fuzziness parameter can be determined according to the
level of redundancy intended and an adequate value is typically found through a grid search procedure.
The elements of partition matrixU are updated iteratively based on the adaptive distance measure:

µik =
1∑c

j=1

(
DikAi

DjkAi

)2/(m−1)
(6.9)

The clustering procedure minimizes the following objective function:

J(Z;U,V,A) =

c∑
i=1

N∑
k=1

(µik)
mD2

ikAi
(6.10)

which besides usingU andV, also includes as optimization variablesmatricesA = (A1, . . . ,AC), adapting
the shape of the cluster, while maintaining the volume constant. The selection of an adaptive distance
measure allows each cluster to adapt to the local topological structure of the data, i.e. the sparsity nature
of the demand, while fixing the cluster volume guarantees the fleets operate over equivalent areas. The
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optimization procedure is stopped when the improvement of the cost function satisfies a given tolerance
||U(k) −U(k−1)|| < ϵ, or if a specified maximum number of iterations is reached.

6.3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired in the natural behavior of ants [83], which is
recognized for its merits in compromising between exploration and exploitation in complex nonconvex
search spaces. This population-based method relies on probabilistic selection based on a combination of
knowledge and experience that enables escaping localminima and taking advantage of the fittest solutions.
The ability of combining local search with dispatching rules and employing different updating schemes
makes ACO a flexible framework and particularly appealing when dealing with scheduling problems [78].
In this work, ACO is applied in two stages: i) vehicle routing and ii) coordination between fleets. The
algorithm developed runs in parallel in each cluster and comprises a two-step system. First, each ant
travels the subnetwork to optimize the routes within each cluster, minimizing the inner-distance between
the nodes. Second, each ant optimizes the allocation of resources, minimizing the system response-time,
i.e. the time necessary to complete the scheduled tasks.
The proposed framework combines two pheromone updating schema, namely delayed updates in the
outer-loop and immediate updates in the inner-loop. The delayed pheromone update acts as a global
update at the end of each iteration and is applied with respect to the best solution found, aiming to
minimize makespan. In turn, immediate updating is used for the local search procedure, and is employed
to iterate through different vehicle routes, favoring the exploration of different paths within the same
population.
The route optimization step has the straightforward objective of minimizing the total distance travelled.
To that end, the heuristic information, ηij , is encoded and defined in matrix form by:

ηij =
1

tij
(6.11)

where tij represents the euclidean distance between locations i and j according to the NED reference
frame defined. The implicit communication between each population of ants is implemented through an
immediate pheromone update scheme, where at the end of each iteration the values of the best global
solution are updated. The pheromone matrix is updated as follows:

τij(t+ 1) = τij(t) · (1− ρτ ) + ∆τkij (6.12)
where t stands for the iteration index, and ρτ denotes the evaporation coefficient that is applied to each
trail at the end of each iteration. The pheromone reinforcement is computed as:

∆τkij =
Q

Dpath
(6.13)
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where Q is a constant parameter and Dpath the total distance travelled in the kth ant path, with τkij being
normalized to values in the interval [0, 1].
The time-based scheduling process the heuristic information, γk

ij , is defined as a function of the traveling
time between locations (i, j) for each vehicle of type k:

γk
ij =

1

tkij
(6.14)

where tkij represents the traveling time between locations i and j for each vehicle of type k. Contrary to
the communication scheme described previously, in the task allocation step the ants communicate with
agents in the same population through a delayed pheromone update. After each ant in the population
attempts a set of vehicle routes, the scheduling pheromone matrix, ϕij, is computed as:

ϕij(κ+ 1) = ϕij(κ) · (1− ρϕ) + ∆ϕk
ij (6.15)

where κ stands for the population index, and ρϕ represents the evaporation coefficient that is applied to
each allocation attempt to favor the exploration of the new assignments by the other ants in the popula-
tion. The pheromone deposited is computed as:

∆ϕk
ij =

Q

MCT
(6.16)

being also normalized to the range from 0 to 1. The parameter Q represents an initialization constant,
while MCT is the Maximum Completion Time, i.e. the time at which the last task is completed by the
vehicles of each fleet. To compute the cost function of the scheduling optimization, the makespan, Cmax,
is obtained as the maximum value ofMCT across all fleets.

6.3.3 Cooperative Framework

The methods presented in the previous sections are instrumental to achieve the proposed resilient coor-
dination approach, as these allow creating decentralized systems with a reasonable level of redundancy
ingrained. To implement a cooperative strategy between neighboringmulti-UAVfleets, an exchangemech-
anism allows the dynamic transfer of nodes between iterations and is based on communication between
agents in the fleets, that relay information about the desirability of having that node in the subnetwork.
To keep a parsimonious communication regime and limiting the amount of information that has to be ex-
changed, the algorithm builds an incidence matrix based on the nodes that are signaled in the network as
being transferable. These can be thought of has joker nodes that can be alienated to achieve an improve-
ment of the local solution, as well as contributing to a better global solution.
The symbiotic cooperation strategy is currently based on the comparison of pheromone entries of fuzzy
nodes in each of the subsystems. However, to truly leverage this approach in dynamic scenarios, load
balancing and priority-based heuristics should be considered and if relevant embedded in the information
exchange.
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6.4 Experiments
To explore the flexibility of the proposed framework, the following sections delve into the experiments
conducted, which are motivated by a real-world application. First, the case-study scenarios considered
are presented, followed by the simulations setups used to explore the proposed algorithms. Note that the
demand characteristics and VRP model parameters, e.g., dimension and configurations of the multi-UAV
fleets, will be assumed a priori, because these can be derived using data-driven approaches. Although in-
trinsically related, these topics are outside of the scope herein. For further details on the demandmodeling
approach and demand-driven dimensioning and design of heterogeneous fleets refer to [76].

6.4.1 Case-study scenario

The following sections analyze a proposed case-study focused on wildfire surveillance scenarios. The
dataset of aerial tasks is based on real locations from the central region of Portugal, comprised of rural
and wildland-urban-interface areas. The dataset was generated using geographical administrative areas,
and the demand was modeled using spatiotemporal Poisson point process [76]. To investigate the merits
of the proposed approach a scenario with balanced demand across areas is studied, where tasks requests
are generated with a homogeneous point process model and similar spatiotemporal intensity.
To illustrate this scenario in an intuitive manner, in Fig. 6.3, we employ kernel density estimation (KDE) to
translate the measured spatial intensity of the demand. Fig. 6.3 exemplifies an instantiation of the case of
balanced demand, where the tasks are distributed with similar intensity throughout the area of interest.

Figure 6.3: Balanced demand distribution using homogeneous (uniform)point process, with similar spatiotemporal intensity levels in each area.

The general characteristics of this case resonates with a broad range of situations encountered in real-
world scenarios. However, in the context of this case-study, the main motivation is to assess possible
scenarios in wildfire support operations. In this context, this case centers on situations resembling wildfire
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detection missions in a prevention stage.
Being wildfire support operations both a safety- and time-critical application, leveraging redundancy can
be instrumental for an adequate trade-off between infrastructure costs and mission goals. It becomes
pertinent to understand the level of cooperation desirable in these distinct scenarios, and the redundancy
necessary to enable such cooperative behavior.
The distance-based measures for optimization defined by the graph model were determined according to
the specifications given in Section 6.2.2, and the capacity constrained is implemented as function of the
maximum flight time of each platform as described in the same section.

6.4.2 Simulation Setups

The simulation setups of the experiments of the problem addressed were designed to have similar struc-
ture regarding the number of multi-UAV fleets. To that end, the number of fleets will be matched by the
number of clusters, C . The main objective of the following experiments will be to investigate how vari-
ations in redundancy will contribute to the resilience of the network, with respect to its responsive and
workload balancing abilities, as well as the overall costs required to satisfy mission goals. The characteris-
tics of the heterogeneous platforms are summarized in Table 6.1.
For comparison purposes, the demandwasmodeled with the same number of tasks for each configuration
tested. Fig. 6.3 showcases instance the resulting demand dataset for a single time interval.

Table 6.1: Model parameters for each type of vehicle k.
parameters multi-rotor fixed-wing
energy cost ek n + 4p n + 1p
flight time fk 0.5h 2h
travel speed sk 0.5 2

Regarding the ACO-based algorithm, the number of colonies is defined equal to the number of fleets, and
the initialization parameterwas defined as: Q = 200. The decentralized algorithm considers one ant colony
per cluster. Several values of population size were tested, leading to the definition of population of 20 ants
per colony. The simulations were performed for Itmax = 1000 iteration steps, without implementation of
early stopping criteria so as to analyze the convergence curves. The simulation tests were performed for
a total of 200 runs for each configuration.

6.4.3 Performance Measures

To evaluate the performance of the proposed algorithm, a sensitivity analysis of parameter selection will
be performed. The models will be compared based on the optimization of the routes, that aims to mini-
mize (6.4a), as well as the optimization of the makespan, minimized through (6.2). The overarching opti-
mization to this objective concern the performance of the global system given by the sumof local problems
as described in (6.1).
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Furthermore, to assess the performance of the optimization approach, the convergence of the algorithm
will be analyzed as well. This will investigate if the convergence rate is sufficient for direct implementation,
or if further parallelization is required on a computational level. The overall evolution of these curves will
demonstrate the effect of the selection of optimization parameters in the improvement of the solutions,
specifically if an adequate trade-off is achieved between exploration and exploitation of new solutions.

6.5 Results
This section explores the case-study scenario to evaluate the proposed coordination framework for task
allocation in multi-UAV fleets. In the sequence, the clustering results will be analyzed for fuzzy partitions
with four clusters, since it facilitates the visualization and understanding of the network model. Subse-
quently, the algorithm will be analyzed under balanced demand conditions, concerning the best solutions
found through this approach for the configurations tested. The section concludes with the analysis of
convergence curves of the algorithm and the discussion of the insights revealed.

6.5.1 Clustering-based Graph Partitioning

To test the proposed hypothesis of increasing network adaptability by having transferable nodes that can
be exchanged to other neighboring subnetworks to improve the overall performance of the system, the
fuzzy decentralization strategy is presented for three configurations, which introduce distinct levels of
redundancy. Fig. 6.4 shows the clustering results yielded from the demand generated for adjacent areas.
Observing Fig. 6.4a, it is possible to verify that for this case a fuzzy parameter of m = 1.2 is equivalent
to a hard partition, where each cluster has mutually exclusive sets, and share possible recharge locations,
depicted in yellow. In turn, in Fig. 6.4b, by increasing the overlap between clusters with m = 1.5, there
are four nodes depicted in blue that belong to the overlapping region, thus have a significant membership
degree to more than one cluster. By increasing further the degree of overlap, the number of exchangeable
tasks increases accordingly, as illustrated in Fig. 6.4c form = 1.8.
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Figure 6.4: Clustering results with different overlapping according to fuzziness parameter m for theinitial static instance: illustrated in orange, purple, red and green are the nodes of each cluster(C1, C2, C3, C4); the fuzzy nodes are depicted in blue color on (b) and (c), with a fuzzy membershipdegree in more that one cluster.
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6.5.2 Cooperative Decentralized Ant Colony Optimization

Based on the network graphs described in the previous section, this section presents selected results for
the cooperative framework. The experimental results are analyzed for the balanced demand scenario with
three levels of redundancy as mentioned previously, by considering the fuzziness parameterm ∈ {1.2, 1.5,
1.8}. Recall the multi-UAV fleets are composed of the same number of vehicles available for deployment
in all simulations, and the fleet parameters are defined in Table 6.1. For the case with balanced demand
(Fig. 6.3), selected solutions obtained are presented in Table 6.2, for different network configurations.

Overall, comparing the global solutions, the graph partitions that enable cooperation present better results,
e.g.,m = 1.2, which in this case is equivalent to a hard partition because no transferable nodeswere derived
from the demand profile with this fuzziness level. Notably, it is also clear that increasing the level of
redundancy and foster collaboration between networks is beneficial cost-wise as solutions for increased
m tend to have lower global operation cost for the entire infrastructure (FG). Themakespan,Cmax, yielded
similar results for all the configurations, with the best resulting form = 1.5 but at twofold the number of
iterations of the other configurations tested. While this can be indicative that the time allocation can see
improvements from longer optimization runs, we can observe that in all setups the algorithm converged
faster to a suboptimal solution so the decision for early stopping would be well-suited in practice for
implementation. Also important to note is that through increased trading of the tasks among networks, in
the case wherem = 1.8, not only the global cost is the lowest, but the cost of operation of each network
is the most homogeneous across networks, revealing adequate workload balancing can be achieved.

6.5.3 Convergence Analysis

In terms of convergence rate, the behavior for the fuzzy partitions was similar, with achieving the best
results within less than 400 iterations, for a population size of 20 ants. Fig. 6.5 showcases the results
obtained over 10 runs for each network configuration, representing the maximum and minimum values

Table 6.2: Selected optimization results for case study with balanced demand profile.
m Clusters (C) Aerial Vehicles Ci Cost Ci (Fi) Global Solution (FG) Cmax Iteration

1.2
1
2
3
4

MR(1), FW(2)
MR(2), FW(2)
MR(0), FW(3)
MR(0), FW(3)

57671
56630
29237
85164

228703 2331 180

1.5
1
2
3
4

MR(1), FW(2)
MR(2), FW(2)
MR(0), FW(3)
MR(0), FW(3)

38462
30057
88449
44092

201062 2017 352

1.8
1
2
3
4

MR(1), FW(2)
MR(2), FW(2)
MR(0), FW(3)
MR(0), FW(3)

10461
26973
28768
36373

196727 2331 179
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of global cost, FG.
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Figure 6.5: Convergence analysis for different network configurations over 10 runs.
The results obtained over a series of 10 runs for each network configuration confirm the fast convergence
of the proposed algorithm and demonstrate that increasing the value of the fuzziness parameter trans-
lates in lower global costs. Subsequent research should investigate further the behavior in unbalanced
scenarios.

6.6 Conclusion
This work focused on tactical aspects concerning the task planning in networks of aerial platforms, propos-
ing a coordination framework that allows cooperation between several neighboring multi-UAV fleets. The
proposed approach aims for improved resilience by: i) developing decentralized systems for increased ro-
bustness, ii) introducing redundancy sparingly and efficiently, and iii) allowing the operation areas to adapt
to fluctuations in demand.
The core novelty introduced concerns the dynamic exchange of workload requests between neighboring
decentralized multi-UAV fleets, through a cooperative coordination strategy based on fuzzy clustering
and ant colony optimization. The main benefit consist of enabling the sharing of resources between dif-
ferent multi-UAV, while allowing balancing the workload across these decentralized networks to respond
to variations in demand.
The case-study developed included the dataset construction from real GPS coordinates of locations in
rural areas in the center region of Portugal, and several network configurations were tested, with different
redundancy levels for a given fleet configuration. The results demonstrate the advantage of the proposed
approach, namely by embedding increased flexibility and adaptability to the aerial resources infrastructure
that translates into cost savings for the operation.
While the algorithm was presented for solving several static instances, the insights gained motivate the
continuation of the development of this framework, due to the benefits this approach may provide in
dynamic scenarios. Future research should consider evolving the formulation to include different priorities
and time-based constraints, as well as extend the framework to address complex multi-robot task, by
introducing dependency constraints.
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Summary
This part presents the research on multimodal perception, with an emphasis on thermal
and visual range imaging solutions. In this context, several different sensing payloads
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work conducted in laboratory and field tests. In this thesis we select the most relevant
contributions of that work. Chapter 7 presents an in-depth study devoted to thermal
infrared image systems, focusing on the behavior in fire scenarios, allowing uncovering
several specificities of their operation important towards their integration in robotic per-
ception pipelines. Chapter 8 proposes a novelmultimodal dataset for UAV-based robotics
research and fire applications collected in field experiments that can empower the devel-
opment of robust robotic navigation solutions and use-cases in fire support operations.
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7.1 Introduction
With the emergent effects of climate change, several regions worldwide have been undergoing an in-
creasing number of wildfire events, more intense and devastating, and extending fire seasons [84, 85]. In
this context, given the high spatial and temporal uncertainty intrinsic of these phenomena, environment
monitoring is determinant for firefighting activities to mitigate the consequences of these events.
Currently, limited areas can be monitored through automatic systems in watchtowers. However, by be-
ing installed near the ground, hence at low altitudes, these systems have several limitations. Since these
are widely based on visible range sensors, clouds can be easily confused with smoke and the sunset or
reflections can be mistaken by flames, leading to false alarms. Moreover, as the systems depend on the
identification of the smoke column, flames can only be detected when the fire has increased in magni-
tude. Hence, often preventing early fire detection. Furthermore, solutions based on satellite data have
considerable latency, thus also hindering its application for early detection.
Albeit the widespread use of aerial means in prevention and emergency-response to forest fires, piloted
aircraft require highly trained personnel and are expensive to operate [86, 87], limiting the number of
vehicles that are used for firefighting and surveillance tasks. However, given that these scenarios require
the coverage of extensive areas where the environment is highly dynamic, the availability of aerial means
is paramount on tactical and operational levels for situation-awareness.
To address this issue, in recent years there has been active research towards developing systems based
on unmanned aerial vehicles (UAVs) for fire detection [88, 89] and operational support [90–92], but it
has intensified lately as a result of the difficulties faced in the response to large-scale wildfires, which has
reinforced the need to detect fires in an early stage, as well as to provide near-real-time monitoring.
In parallel, the recent advances in robotic perception have opened a path towards autonomous robotics
by taking advantage of novel sensors and intelligent systems to enable autonomous navigation and ex-
ploration [93]. The breakthroughs in sensor technology and embedded computing have resulted in the
progressive decrease in weight/size ratio and equipment cost while incorporating powerful computing ca-
pabilities. These emerging technologies are enabling real-time processing of high-dimensional data, which
allows equipping UAVs with advanced thermal and optical image sensors as well as computing platforms
for on-board data processing.
In this context, the general aim of this investigation is to contribute to the development of UAV-based
systems for fire detection and monitoring, namely in what concerns the integration of thermal cameras in
robotic perception for these tasks.
The main objective of this study is to provide a comprehensive understanding of the behavior of thermal
imaging sensors in fire detection scenarios by relating the sensor response and the image processing em-
ployed in this type of device. In that sense, this work explores sensory data from two different thermal
cameras by linking the raw sensor data to the mapping functions employed to obtain images encoded
in pseudocolor. For this purpose, several fire experiments in controlled conditions were performed in
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laboratory and field trials covering distinct operating regimes of this type of sensors.
The contributions of this article are threefold: (1) the overview of state-of-the-art image processing al-
gorithms widely used in thermal imaging cameras; (2) the in-depth analysis of the behavior of thermal
cameras targeted at fire identification scenarios based on controlled fire experiments; (3) discussion of
the implications of the insights exposed and the potential developments on robotic perception towards
autonomous UAV-based fire detection and monitoring systems.
Considering the growing availability of low-cost, compact thermal cameras for UAV-borne applications,
the uptake of this technology will progressively increase in the near future [94]. Being this topic an active
area of research, the relevant insights outlined in this article provide important considerations to guide
future research. Hence, also contributing towards the practical implementation of thermal-enabled fire
detection and monitoring systems, which bring great potential to minimize the impacts of fire events.

7.1.1 Related Work

The advent of the evolution of remote sensing technologies has led to the continuous improvement of fire
hazard identification and risk assessment systems. Over the years several types of platforms have been
explored for these solutions such as satellites, high-altitude aircraft, remotely piloted aircraft systems,
enabling the assessment of the progression of fire events [17].
Although satellite-based imagery is used by emergency-response agencies to monitor large-scale wildfires
that burn over extensive periods, the wait interval for satellite overpass induces a considerable time-delay,
which prevents its application in time-sensitive fire detection scenarios such as emergency evacuations
or search and rescue operations [95]. Despite its value from a strategic standpoint, for tactical and oper-
ational decision support the availability of updated information is crucial. To address this while avoiding
the expensive operation costs of piloted aircraft, UAVs are considered as a viable alternative for remote
sensing, by providing local coverage with high spatial and temporal resolution.
In previous contributions, wildfire detection applications based on airborne systems have explored visible
range, thermal, or multispectral technologies [96]. However, since the radiation emitted from a fire is high
in the thermal range, there has been significant interest in the use of thermal infrared bands [17]. In that
sense, the following review focuses on contributions employing the thermal range.
Thermal infrared cameras provide sensing capabilities suitable for ongoing environmental monitoring by
operating in both daylight and in night conditions. Additionally, in contrast to visible range sensors for
which smoke severely affects the ability to detect and track the perimeter of fire fronts, for thermal infrared
cameras the impact of smoke presents lower interference.
Regarding the development of automatic algorithms, several contributions have presented advances to-
wards this objective. On the one hand, works on image processing algorithms have focused on the ex-
traction of image descriptors to obtain signals representing fire instances as to detect the presence of
a fire by assessing the time-series data [97]. On the other hand, since thermal images adapt according
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to the context in the field of view of the camera, considering only the brightness information can lead
to false alarms. To address this issue, some approaches combine both spatial and temporal features, i.e.
brightness, motion and flicker [98]. In turn, the integration of infrared cameras has been suggested as
a way to improve visual range fire surveillance systems, as to harness the advantages of both visual and
thermal features, to yield more accurate early fire detection rates [99–101]. More recently, an off-line
processing fire-tracking algorithm based on edge-detection has been proposed to process georeferenced
thermal images previously acquired using an airborne thermal camera [102].
Note, however, that not all the research efforts previouslymentioned focus specifically or solely onwildfire
detection. In a wider scope, considering fire detection outdoors, authors have recognized the difficulty
in applying image processing algorithms in this setting due to a significant rate of false positives, caused
by external factors such as weather conditions, sunlight reflections, or saturation of the infrared sensors
caused by other heated objects [103]. Given the challenges faced in real contexts, it becomes rather
complex to overcome these limitations with ad hoc classical computer vision algorithms.
In alternative to computer vision methods, to improve generalization in dynamic scenarios, intelligent
systems approaches have been proposed, namely data-driven models based on feature engineering and
fuzzy inference systems [104]. The nonlinear approach has been successfully tested in fire experiments
under controlled conditions and validated in highly dynamic environments such as camping sites.
Most of previous approaches were designed for data acquisition purposes and algorithm design, whereas
only recently autonomous systems are being developed as result of the increased data processing capa-
bilities aboard aerial vehicles.

7.1.2 Proposed Approach

Thermal cameras have a clear potential for wildfire detection and monitoring tasks, but the path towards
its integration in robotic perception pipelines, that are essential for autonomous systems, is still rather
understudied. To contribute to narrow this gap, this work conducts a comprehensive study of thermal
imaging sensing to extend the understanding of the inner-workings of this technology and how it can be
leveraged for wildfire surveillance tasks. For that purpose, it is important to identify the main challenges
this work addresses in the following.
First, although thermal imaging cameras are increasingly available for amultitude of industrial domains [105],
with expanding model ranges and accessible equipment costs, its application is still limited, which can be
attributed to two factors. On the one hand, most applications rely on a human-in-the-loop approach,
which typically requires specialized training and technical expertise to interpret the image data, but this is
in general based on high-level knowledge oriented to the domain of application. On the other hand, as dis-
cussed in the literature review, machine vision approaches depend on feature based approaches derived
from image data, which do not take into account the image processing algorithms underlying the output
data. However, these abstraction layers hinder the development of automatic algorithms due to the adap-
tive nonlinear nature that is at the core of the behavior of these systems. Therefore, the knowledge of the
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underlying processing methods involved to generate the image output is central to understanding how
to leverage this technology in a robotic perception framework. In that sense, the first step in this work
concerns the overview of state-of-the-art image processing algorithms employed in most commercially
off-the-shelf thermal cameras.
Second, adapting thermal imaging cameras for wildfire detection scenarios differs considerably from gen-
eral applications e.g. industrial inspection or precision agriculture, in the sense that it deals with extreme
temperatures. In this context, the importance of quantitative information is less prevalent than qualitative
data because a fire can be identified by high temperature gradients with respect to ambient conditions,
thus can be detected using the relative temperature differences in the images. To that effect, having ra-
diometric information is not determinant because the intensity levels can translate the relative difference
between objects in the scene. Nonetheless, a correct interpretation of the adaptive algorithms is required,
because the color encoding schema adapts to the range of measurements in each instance. For these
reasons, after covering the processing algorithms in the first part of this work, we demonstrate the impli-
cations of its usage in wildfire detection scenarios. To that end, several fire experiments under controlled
conditions were conducted to study the behavior of thermal cameras in those situations, to characterize
how the raw sensor data is mapped to visually interpretable pseudocolor images. In this regard, attention
is taken to the identification of the saturation levels of this type of sensors.
Third, we discuss the implications of the insights exposed and the potential developments on robotic
perception towards autonomous UAV-based fire monitoring systems, namely through the identification
of current roadblocks and possible enabling solutions manufacturers should integrate for the widespread
use of this technology.
After this introduction, the remainder of this article is structured as follows: Section 7.2 covers the overview
of image processing algorithms employed in thermal cameras. Section 7.3 presents a data-driven method
based on thermal imaging for fire situation-awareness. Section 7.4 presents the experimental setups and
conditions of the laboratory and field trials. Section 7.5 analyzes the results and discusses the implications
for the integration of thermal imaging in robotic perception on wildfire surveillance. At last, Section 7.6
presents the conclusions and offers suggestions for future research.

7.2 Thermal Imaging
The basic principle of thermal imaging is based on the concept of sensing the radiance emitted from
objects of interest. Note that above absolute zero temperature, i.e. 0K, all bodies emit thermal radiation.
In a general definition, what is referred to as thermal range is comprised by radiation with wavelengths in
the 10-7m to 10-4m interval of the electromagnetic spectrum. Hence, this gamma includes spectral bands
in the ultraviolet, visible, and infrared region of the spectrum.
Although this range is rather ample, usually thermal cameras only cover a part of it, which varies depending
on the model and the application for which it is intended. More specifically, the devices employed in this
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work are based on uncooled microbolometer detectors that cover part of the infrared band, namely the
7.5 - 13.5µm spectrum, which is widely common for camera models in the market.
Thermal infrared cameras employ complex signal processing architectures in order to output images that
convey relative temperature differences between objects in a scene [106]. This process comprises several
stages that are summarized in Figure 7.1, which are briefly described in the sequence.

8-bit dataraw signals thermal imagedigital data Automatic Gain 
Control RGB encodingDetection

Infrared Radiation
Analog to Digital 

Conversion

Figure 7.1: High-level diagram of the process flow in uncooled microbolometer arrays.

In the first stage, incident infrared radiation is absorbed, inducing changes of resistance in eachmicrobolome-
ter detector of the focal plane array, which are translated into a time-multiplexed electrical signal by a
readout integrated circuit (ROIC) [107]. Then, the array is calibrated automatically at each it is powered to
match all microbolometers to the same input/output characteristic function that relates the measured ra-
diance intensity and the output signal. This is performed through a linearization process and temperature
compensation of the signals from individual detectors of the array [108]. Second, with these compensated
signals, the measurements are transformed into raw pixel values that translate the intensity values that
compose a monochromatic image. Raw image data can be subsequently transformed into pseudocolor
images through a automatic gain control procedure and RGB encoding according to a user-specified color
palette to facilitate interpretation.
Besides sensing the radiation being emitted from objects in the field of view, another important aspect
concerning thermal cameras is the ability to measure temperature. While this topic is extensively covered
in the literature, with respect to how the incident radiation is transformed into approximate temperature
readings [108], in this work we do not delve into this matter for two main reasons. First, with this study
we aim to address the general image processing pipeline that is transversal to most thermal cameras, i.e.
irrespective of these having radiometric capabilities or being non-radiometric. Second, although in differ-
ent contexts the correction of temperature values of thermographic images can be performed a posteriori
using off-line post-processing methods, this requires a known reference in the image content [109]. In the
case of wildfire surveillance, if we consider the environment to be open and unknown with regard to the
temperature, i.e. without access to external absolute temperature readings, on-line thermal correction of
the calibration for real-time applications is not possible.
Taking into account these considerations, the main focus of this work is on how raw digital readings are
encoded into pseudocolor images, which can be applicable to image data from both radiometric and non-
radiometric thermal cameras.

7.2.1 Sensor characteristics: preliminaries

Thermal imaging systems are optical instruments that are able to generate two-dimensional representa-
tions of the surrounding environment as a function of the strength of incoming thermal radiation. These
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exteroceptive sensors transform a digitally encoded array of pixels into an image according to the camera
perspective projection, which depends on the focal length of the lens.
Digital images are generated according to the characteristics of the camera sensor, namely spatial resolu-
tion, temporal resolution and dynamic range [110]. The spatial resolution is intrinsically related to the size
of the focal plane array and defines the number of pixels in an image, as well as the corresponding aspect
ratio. The temporal resolution is associated with the operating frequency of device, i.e. the frame-rate at
which the camera yields image data. In turn, the dynamic range corresponds to the gamma of intensity
values represented. Additionally, the resulting images also depend on the automatic gain, which is a fun-
damental aspect of the manner thermal images are encoded, since most camera models employ automatic
gain control, as will be discussed further along.
To explore the effect of these characteristics, this work resorts to two distinct thermal cameras, namely
FLIR SC660 and FLIR Vue Pro, that operate in the region denominated as Far Infrared (FIR) or LWIR (Long
Wave Infrared). The main specifications of these camera models are presented in Table 7.1.

Table 7.1: Summary of the specifications of the thermal cameras.
FLIR SC660 FLIR Vue Pro

Spatial Resolution (px) 640 x 480 336 x 256
Temporal Resolution (Hz) 30 8.3
Bit resolution (bit) 14 16
Focal Length (mm) 19 9.0
Horizontal FOV (o) 45 35
Vertical FOV (o) 34 27
Spectral Band (µm) 7.5 ∼ 13.5 7.5 ∼ 13.5
Measurement Range (oC) -40 ∼ +1500 -60 ∼ +150
Size [L x W x H] (mm) 299 x 144 x 147 63 x 44.4 x 44.4
Weight (g) 1800 92.1 - 113.4

Regarding the field of view (FOV) specifications and focal length, note that these cameras have distinct
characteristics, which will influence the data recorded. Moreover, spatial resolution, temporal resolution
and dynamic range also vary between both models, which is an aspect to take into consideration. In the
case of the FLIR SC660 the automatic gain can be adjusted to different configurations to change the
dynamic range.
In addition, having in mind the payload budget of small UAVs, comparing the weight and size of both
cameras, only FLIR Vue Pro has suitable characteristics to be taken onboard a small UAV. However, given
the exploratory basis of this work, the radiometric capabilities of FLIR SC660 are valuable for the study
of these sensors in extreme conditions inherent to fire scenarios.
Although this work explores these cameras, other alternative models have been released more recently,
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with higher spatial resolution and gimbal integration, albeit at superior costs. Notwithstanding, from the
standpoint of hardware and firmware available the update does not have a significant impact on thermal
imaging results, since the major benefits of the newer models lie on facilitated integration for deployment
on UAVs or graphic user interfaces for control from mobile devices. Thus, the analysis presented herein
also applies to different thermal cameras.
In the sequence, the image processing methods for generating thermal images are described, through ex-
amples explaining the mapping algorithms that perform the transformation of raw digital data into pseu-
docolor encoded images.

7.2.2 Mapping raw digital data to thermal images

Thermal cameras are in general single-band in the sense these only producemonochromatic images, which
subsequently undergo a sequence of image processing steps, to transform the raw digital data into pseu-
docolor images to highlight the details of the scene context. This processing pipeline can be implemented
either on-device for storage or digital output, or on external software.
Currently, commercially off-the-shelf devices already provide a variety of color palettes to enhance the
visual interpretation of the amounts of radiance captured by the sensors. However, to design intelligent
algorithms for autonomous systems, the color encoding schema has to be well-suited for the robotic
perception approach, which is essential to fulfill the application requirements. For this reason, this also
requires a deeper understanding of the image processing pipeline to leverage the potential of this type of
sensors for novel applications.
The raw intensity levels are given by a digital number assigned by the sensor analog to digital converter,
which can be of 14-bit or 16-bit order depending on the sensor bit resolution. In this work, we will employ
both these alternatives as specified in Table 10.1, but since these algorithms apply in the sameway to both
versions, the following examples showcase only the processing of raw data in 14-bit space. Further along
in the analyses of the sensor response to fire scenarios both cases will be covered in detail. Note that the
bit resolution relates to the temperature range of the camera and for camera models with different modes
such as the FLIR SC660, the intensity level values will also be influenced by the camera configuration, i.e.
the high-gain or low-gain modes.
To obtain a thermal image in pseudocolor, the image processing pipeline is divided into two main steps:
(1) application of a data compression technique denominated automatic gain control; (2) application of
the color palette specified yielding images with three channels corresponding to the RGB color-space
representation.
Automatic Gain Control (AGC) is a histogram-based technique that performs the transformation between
raw data formats to 8-bit image data. This processing method is responsible for data compression, which
implies a considerable loss of information. For the 16-bit case, from a range of possible values of 0 to
65535, the resulting image will be represented with values in the 0 to 255 interval. To counteract the
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decrease in detail, the AGC algorithms are designed to enhance the image contrast and brightness in
order to highlight the scene context.
The following sections cover with illustrative examples the main variants of AGC algorithms implemented
in thermal cameras that practitioners should be aware off to leverage this technology. Then, the color
mapping schema and several color palettes available are presented in Section 7.2.2.

Histogram-based automatic gain control

AGC methods are typically variants of histogram-based operations widely used in computer vision for
contrast enhancement, e.g. histogram equalization [110]. However, in thermal imaging AGC also implies
data compression between raw formats (e.g. 14-bit or 16-bit) to display-ready data (8-bit).
In classical histogram equalization the nonlinear mapping used for contrast enhancement is derived di-
rectly from the cumulative distribution function (cdf) of the raw intensity values. This approach allows
achieving an approximate linear cdf on the compressed 8-bit data, yielding an image with intensity values
spread across the full extent of the available 8-bit range. Figure 7.2 illustrates this AGC procedure for a
14-bit raw image converted to 8-bit range.
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Figure 7.2: Automatic gain control with linear histogram.

Note that although the bit resolution of the 14-bit sensor represents values up to 16383, for environments
with ambient temperatures around 20oC the raw data captured is represented in a narrow band of the full
range, as can be observed in Figure 7.2. Therefore, compression and contrast enhancement play a pivotal
role in the encoding of thermal images. However, note also that enhancement operations in thermal
images artificially distort the data, meaning that the physical correlation that relates the radiant flux from
infrared radiation and pixel intensity is lost.
Alternatively, for cases where it is important to preserve the correspondence between pixel intensity and
temperature of objects for instance, a "linear" mapping function is better suited. The linear approach also
relies on the cdf to define the image transformation table (ITT), by defining the slope and clipping points
of the resulting nonlinear mapping function. Figure 7.3 depicts the application of this AGC algorithm to
the previous example.
In addition to the cdf, the linear transformation, given by T (x) = mx + b, requires setting the midpoint
of the Image Transfer Table, ITTmid, which is normally the average value of the range of the 8-bit range
(128), and the tail rejection percentage r%. These parameters are used to determine the points on the cdf
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Figure 7.3: Automatic gain control with linear histogram.

employed to define the linear equation and respective slope,m, and intercept, b, as:
b = ITTmid −mean(x100−r% , xr%) ·m (7.1)
m = 255/(x100−r% − xr%) (7.2)

with x representing the raw values indexed in the x-axis of the histogram. The image transformation
function, T ′(x), is defined for the gamma of values of the histogram by clipping the values to the lower
and upper bounds of the output domain [0, 255], as can be observed in Figure 7.3. Note that the clipping
of the increases the absolute frequency of 0 and 255 intensities in the 8-bit histogram. Subsequently the
data are converted through the ITT look-up table.
In practice, the ITTmidpoint influences the brightness of the image in the sense that increasing or lowering
the midpoint shifts the equation horizontally to the left or right, respectively. As a result this clips the data
to zero at a corresponding lower or higher raw value, and vice-versa for the 255 upper bound. This aspect
is especially relevant because for fire detection scenarios which present high temperature gradients both
low and high raw values are important for situation-awareness. Likewise, the definition of the tail rejection
percentage follows the same principle. Therefore, parameter tuning should be approached with caution
as not to discard relevant data.
Nonetheless, the linear algorithm is not the most used AGC method, because this compression tech-
nique implies a considerable loss of detail. To avoid this limitation, thermal cameras usually employ the
plateau equalization algorithm that aims to balance the distribution of all intensity levels in the image
scene, thereby enhancing image contrast and highlighting differences in temperature.
The plateau equalization algorithm [111] implements a nonlinear mapping that compromises between his-
togram projection and histogram equalization. The concept is to bound the representation of the different
intensity levels to a defined threshold termed as plateau value, P , while limiting the slope of the transfor-
mation function through the maximum gain value, G, which by default is set to 1. However, for images
with low dynamic range, where a small interval of values have high bin counts, the plateau equalization al-
gorithm may yield less intensity values than the 256 available in 8-bit space. To ensure the entire contrast
depth is leveraged, the maximum gain sets the upper limit of gain that can be used to stretch the data to
the full extent of the 8-bit range. Considering fire detection applications exhibit most likely high dynamic
range situations, this parameter will not be tuned in the development of this work.
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First, the image histogram is clipped according to the plateau value, and represented through the effective
count, cx, for each raw intensity level x, which conditions the absolute frequencies not to exceed the
prescribed plateau value, P , as:

cx ≡ min(Cx, P ) (7.3)
where Cx represents the original count of pixels having raw intensity value x. The plateau equalization
mapping function is based on the cumulative distribution function of the clipped histogram values, de-
noted by cdf’, which is computed according to:

cdf’(x) =
x∑

j=0

cx, 0 ≤ k < 2N (7.4)

with N representing the exponent corresponding to the original bit resolution of the sensor. Then, the
transformation function based on plateau equalization for a 8-bit compression is defined as:

TPE(x) =

⌊
255 · cdf’(x)
cdf’(2N )

⌋
(7.5)

where ⌊⌋ represents the truncation operator to the next lower integer. Note that if the plateau value
equals themaximum absolute frequency in the original histogram, this algorithm is equivalent to histogram
equalization. In turn, if the threshold is defined as 1, this algorithm behaves as histogram projection. The
plateau value is by default established as a percentage of the maximum value of the bin count of the
histogram, e.g. 7%, but varies depending on the camera model and specifications. Figure 7.4 illustrates
the application of the plateau equalization algorithm for the previous example.
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Figure 7.4: Automatic gain control with plateau equalization algorithm.

Besides these algorithms some cameras also have the information-based equalization variant that com-
bines the plateau equalization algorithm with basic image enhancement techniques to yield more detail
from scene context, irrespective of the data distribution. This method is not implemented in FLIR Re-
searchIR but was implemented herein for illustration purposes.
Information-based equalization aims to allocate a proportional amount of the dynamic range to different
parts of scene to capture the most information from the scene context, irrespective of these being repre-
sented with a large part of the image such as the background, or by small areas with slight variations in
temperature in the foreground. This method performs this by using a high pass filter to highlight detail
in the image, which is subtracted from the original image before application of plateau equalization. The
low pass histogram is subsequently modified by increasing the bin count of the pixels in the high pass im-
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age. Hence, increasing image contrast whilst also including greater detail. For instance, in a fire scenario,
this may be useful to distinguish the fire while also being able to discern if there are people in the scene.
Since this is an extreme case, with high dynamic range in the raw data, the effect of the compression to
8-bit data implies a significant loss of detail, therefore making more important these image enhancement
techniques to highlight even subtle variations in temperature.
While in controlled environments adequate tuning of this type of algorithms can yield better results, in out-
door contexts adjusting these methods for a robust and consistent performance becomes very complex,
because the uncertainty and measurement errors associated with these open and unknown environments
is greater due to the distinct emissivity properties of the multitude of heterogeneous materials that can be
encountered [108]. In this way, by distorting the actual measurements these contrast enhancement tech-
niques also introduce greater inaccuracy in the image representation, which can hinder the development
of robust robotic perception methods.

Thermal Imaging Metadata

In addition to the image data, thermal imaging files also store different types of metadata encoded under
standard metadata formats e.g. TIFF, Exif and XMP. By accessing this information through adequate inter-
faces several valuable parameters can be retrieved. Besides encoding the standard properties of digital
camera e.g. focal length, focal plane resolution and GPS coordinates, the manufactures can also store cam-
era calibration parameters relevant for conversion between raw intensity values and temperature values.
Herein, we explore relevant metadata tags which help to shed light into the working mechanisms of these
sensors, providing important insight into useful parameters for robotic integration. More specifically, since
we tackle the relation between raw data and RBG encoded data, only the parameters that influence this
transformation will be addressed.
The metadata was retrieved from raw video files and image files encoded in "SEQ"or "TIFF" and a propri-
etary format from FLIR that encodes both JPEG and metadata as outlined in Figure 7.5.

JPEG Image Data TIFF Raw Data EXIF XMP

8-bit Data Metadata

Figure 7.5: Schematic of file structure of FLIR image format.

By analyzing the metadata of the image and video files, two Exif tags were identified that are closely
related to the histogram-based algorithms presented in Section 7.2.2, namely Raw Value Average and
Raw Value Range. The range of raw values and average values are encoded separately in the metadata
but may not correspond to the values that would be computed from the raw frames for every instance.
The reason for this is probably the proprietary in-camera processing to deal with noise and other types
of outliers. For FLIR SC660 the calculated values do not match the encoded values in the files, whereas
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for FLIR Vue Pro both match exactly for data recorded in image mode. This indicates that the update of
these values also varies depending on the device and the mode of capture as it is related to the firmware.
With the average and the range of raw values from the metadata tags, the maximum and minimum values
of the color scale are computed as follows:

Raw Value Max = Raw Value Average +
Raw Value Range

2
(7.6)

Raw Value Min = Raw Value Average− Raw Value Range

2
(7.7)

However, note that if these metadata tags are not available the maximum and minimum values of the
raw data can be computed directly online as observed in the histogram-based algorithms presented in
Section 7.2.2, by extracting maximum and minimum values directly from the raw frames.
Given that the histogram-based mapping functions and the respective color encoding adapt according to
the scene context, these parameters are essential to understand how the color scale adjusts over time.
Thus, these will be explored next in the data-driven analysis approach proposed in Section 7.3.
Considering that fire surveillance applications are an extreme case with high dynamic range, it is impor-
tant to evaluate how these techniques behave in such scenarios. Thus, to delve into this issue, in the
sequence the color encoding used to enhance the interpretation of thermal data is presented, along with
the comparison of an example for a controlled burn performed in a real-world context.

Color mapping

Following the conversion to 8-bit image format, the data is represented in the 0 to 255 range. To encode
these values in a RGB color space representation, the cameras offer several color palettes with distinct
characteristics, which are adequate for different applications. In cases where the cameras provide the raw
data in addition to the RGB encoded images, this data can be post-processed with different color palettes
for further analysis.
The color palette is a discrete set of color samples composed by values for each color channel and is
defined in a lookup table (LUT) in the camera firmware or external software. In practice, this discrete
sequence of values provides a continuous representation of themapping of values in the image. Figure 7.6
illustrates this for some widely available color palettes, presenting the set of discrete colors that form the
color mapping applied to the 8-bit data. The color sequences are depicted matching the increasing order
of bit values, meaning these are attributed from lower values to higher values of sensed radiant flux.
Notwithstanding, recall that the color scale is adaptive, thus the color assignment also depends on the
AGC algorithm and for this reason the full spectrum of colors is not necessarily used in each image.
The different types of colormaps depicted can be advantageous in different applications. For instance,
the WhiteHot or Ironbow, employ a sequential colormap with an uniform distribution between two main
colors. In turn, Lava uses the contrast between several colors to enhance subtle differences between tem-
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peratures of objects in the scene, whereas the GrayRed alternative employs a divergent color distribution
to highlight large temperature gradients in a scene.

(a) Whitehot (b) Ironbow

(c) Lava (d) Grayred
Figure 7.6: Examples of thermal imaging color palettes.

Since herein the principal interest is to adapt thermal imaging sensors for wildfire detection and monitor-
ing, the GrayRed color palette was selected. As depicted in Fig. 7.6d, this palette applies high-contrast
colors with a divergent color scheme, which is useful to draw attention to the hottest objects in the scene.
Furthermore, an extensive color-based data analysis also employing this colormap in the detection of fire
situations was presented in previous work [104]. Thus, in the interest of extending the scope of this in-
vestigation to the analysis of both color encoded images and the raw data, the same color palette will be
used in this article.
For comparison of alternative automatic gain control techniques, Figure 7.7 demonstrates the resulting
images obtained with the different histogram-based methods, for a controlled burn in a real context. The
linear and plateau equalization (PE) methods follow the principles explained previously, whereas two ad-
ditional FLIR proprietary methods available through FLIR ResearchIR are also presented, namely Digital
Detail Enhancement (DDE) and Advanced Plateau Equalization (ACE).

(a) Linear (b) PE (c) APE (d) DDE
Figure 7.7: Comparison of results of AGC algorithms: (a) linear, (b) plateau equalization (PE), (c) ActivePlateau Equalization (APE), (d) digital detail enhancement (DDE).
From observing these examples it becomes clear that advanced contrast enhancement techniques de-
grade the ability to distinguish the fire from the surroundings. Note that these algorithms were applied
with the default configurations, i.e. in its less intense mode, so further tuning of the parameters would
deteriorate the image interpretation even further.
In addition these core AGC methods, the image processing pipeline can also include for some cameras
an array of proprietary features such as Active Contrast Enhancement (ACE) and Smart Scene Optimiza-
tion (SSO). These algorithms also tune the image output and their parameters can be adjusted manually
using manufacturer software applications, but in this study the default values were used.
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7.3 Data-driven Thermal Imaging Analysis
Since fires are sources of extreme heat with a strong emission of infrared radiation, thermal imaging
sensors can potentially bring significant advantages for fire surveillance applications. However, to im-
plement autonomous systems for early-detection and monitoring, i.e. independent of human-in-the-loop
approaches, the robotic perception algorithms have to be data-driven.
To provide a preliminary intuition on the behavior of this type of sensors in the advent of a fire ignition,
this section starts by introducing an experimental example of a fire detection instance in a controlled envi-
ronment with static image capture conditions. Subsequently, a feature engineering approach is designed
for data-driven situational-awareness in fire scenarios.

7.3.1 Thermal Imaging in Fire Scenarios

The following example presents an illustrative demonstration relating image response, the temperature
profile of the scene, and rawmeasurements to offer some insight into the sensor behavior. The experiment
was performed in a laboratory environment, with direct line-of-sight between the fire and the thermal
camera, in this case FLIR SC660. Figure 7.8 presents selected samples from the ignition of a straw fuel
bed at different time instances. The corresponding temperature profile, which is represented in Figure 7.9,
was extracted from the radiometric data provided through FLIR ResearchIR software. At this juncture, this
example is presented as a preliminary analysis. For further information concerning the experimental setup
refer to Section 10.2, where the experiments are covered in full detail.
Observing the samples depicted in Figure 7.8, it should be noted that although the strongest source of
thermal radiation is depicted in red, this does not mean it is necessarily fire. Hence, it would be a naive
approach to focus only on the detection of the hottest objects in the scene. This is caused by the adaptive
nature of the histogram-based algorithms in the image processing pipeline.

(a) Frame 80 (b) Frame 112 (c) Frame 121 (d) Frame 167
Figure 7.8: Fire ignition detection with a radiometric thermal camera.

In the first frame, right before the ignition, the majority of the frame has green colored pixels, whereas
from the second frame onwards, as the fire starts the contrast progressively shifts. In result, the objects
with temperatures close to the ambient temperature are subsequently represented by pixels with a whiter
shade. It is important to notice that in this context the color scale that translates the differences in tem-
perature adjusts with respect to the object in the scene with the maximum temperature. This effect can
be observed by comparing the first and second frames. Whereas in the first the person can be observed
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in red, in the second the person is depicted with a dark green. This happens because radiation being
emitted by the greatest heat source is measured by the sensor with a much higher intensity than the radi-
ation emitted by the person. While the temperature of the person remained unaltered, the range of raw
measurements expanded, prompting a significant adjustment in the color scale. The underlying reason for
the color evolution is that at this stage the body temperature is much closer to the ambient temperature
than to the temperature of the fire. Comparing the first and last frames highlights that as the temperature
differences increase the contrast in the image adjusts accordingly.
The temperature profile of the experiment is illustrated in Figure 7.9, along with the raw statistics com-
puted from the data frames. Note that the temperature profile depicts the maximum and minimum values
of temperature extracted from the pixels in the image, as well as the average temperature computed with
the maximum and minimum values. Note that the first increase in maximum temperature around frame
80 concerns an ignition that did not fully develop, so a re-ignition was promptly conducted, which can be
observed by the increase in maximum temperature from around frame 110 onwards.

Figure 7.9: Comparison of temperature and raw data and the evolution of the adaptive color scale.

In juxtaposition, Figure 7.9 also represents the corresponding evolution of the raw values, including the
maximum and minimum raw values extracted from the image, as well as the average between theses two
metrics, to illustrate how the color scale adjusts as the dynamic range extends. Note that this depiction
does not take into account the application of histogram-based algorithms, in the sense that it only trans-
lates a linear application of the GrayRed colormap to the raw values. Nevertheless, it provides a broad
intuition regarding the adaptive color scale, while relating the raw measurements and the temperature
data with the pseudocolor images presented in Figure 7.8.
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Since for this trial the camera was configured to measure up to 500oC, it is noticeable by observing both
graphs, that the sensor saturates when that temperature is reached.
The analysis of these variables highlights the importance of testing the thermal imaging cameras in real
operation scenarios and characterizing the behavior of these sensors in extreme conditions, as it may
exhibit differences depending on the camera models. In the case of the FLIR Vue Pro in image mode the
values in the metadata match the maximum and minimum values of the raw frames.
Therefore, in order to employ thermal imaging sensors for situation-awareness in fire detection and mon-
itoring scenarios, it is important to translate the insights from this analysis into meaningful features for
robotic perception, as explored will be in the sequence.

7.3.2 Feature engineering

Autonomous robotics requires real-time processing of sensor data for navigation and guidance, e.g., to
enable sensor-driven planning, as it is crucial for the robot to have precise estimates of its position and
attitude, as well as its surroundings, in order to plan its trajectory online. Even though emerging on-board
computing platforms have higher processing capabilities, to incorporate powerful exteroceptive sensors
capable of generating high-resolution samples of the surrounding environment, it is essential to handle the
burden of data dimensionality. Furthermore, considering the required high sampling frequencies suitable
for these tasks, mobile robotics applications are increasingly data-intensive, thus feature engineering plays
a prominent role to derive efficient algorithms.
In light of the insights exposed in the previous sections, the following presents a feature engineering
approach for situation-awareness using thermal imaging, that combines feature extraction from raw data
and pseudocolor images, to yield relevant features for robotic perception in fire scenarios.

Raw-based features

The feature extraction approach for raw data is based on the construction of features that aim to pre-
serve the intuition of the actual working mechanism of thermal imaging sensors and the histogram algo-
rithms of the image processing pipeline. Recalling the examples presented in Section 7.2.2, the raw-based
features will explore the maximum, minimum and average value of the range of the raw data frames.
As explained in the metadata description in Section 7.2.2, these variables can be computed according to
equations (7.6) and (7.7), but since these do not always match the metadata tags for the cameras tested,
it is advisable to extract these variables online from the raw data frames.

Color-based features

To extract features that translate the evolution of the color statistics of the image in fire scenarios, as ob-
served in Figure 7.8, this work employs the color segmentation heuristic proposed in [104]. The approach
divides the GrayRed color palette into three parts according to the three main colors that compose this
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palette: gray, green and red. The complete color scale that comprises 120 distinct color representations,
defined in the RGB color space, is partitioned as illustrated in Figure 7.10.

15% 40% 45%

Figure 7.10: Division of the color scale.

The first segment represented in gray corresponds to lower raw values, i.e. lower temperatures, and is
defined by 18 color levels, which represent 15% of the color scale. The green segment is defined by 48
color levels, that represent the mid-range of raw values, corresponding to 40% of the color palette. Since
this color palette is designed to draw attention to the hottest elements in a scene, the largest portion
corresponding to 45% of the color scale is dedicated to 54 red color levels. Although these color exhibit
high contrast between them, color gradients between each color are low. The segmentation is performed
according to the parameters in RGB color space defined in Table 7.2.

Table 7.2: RGB segmentation thresholds for feature construction.
features gray green red
channels R G B R G B R G B
upper limit 253 199 185 143 169 157 255 73 71
lower limit 149 171 160 98 90 86 103 89 85

In contrastwith strictly data-based approaches, the proposed feature engineeringmethod allows the incor-
poration of expert knowledge about the sensor by deriving features from the information retrieved from
raw data, in combination with the data-driven color segmentation heuristic that describes the behavior of
the sensor over time. Furthermore, these features are designed with data interpretability in mind, which
is especially important for safety-critical applications such as wildfire detection and monitoring systems.
In order to study the response of thermal imaging sensors, a comprehensive set of experiments was con-
ducted, for analysis of the sensor image processing pipeline and its application in real scenarios, which are
presented in the sequence.

7.4 Controlled Fire Experiments
This section presents a set of controlled fire experiments performed in laboratory and field contexts. The
trials comprise the burning of wild fuels such as straw, common heather (Calluna vulgaris) or Baccharis
(Baccharis trimera), as well as artificial materials present in a caravan that was also experimentally burned.
In the following, each section describes the experimental setup and conditions used in the trials, as well
as the means employed for data acquisition.
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7.4.1 Laboratory Test

The laboratory experiment enables testing the response of the camera to a fire ignition in a controlled
environment, allowing a high-resolution sampling of the phenomena under environmental static condi-
tions. Since the test was performed indoor there was no influence of wind. The horizontal fuel bed was
composed by straw with a fuel load of 600g/m2 and a moisture content of 13%. The environmental tem-
perature and relative humidity were 20oC and 78%, respectively. By using these testing conditions the
behavior of the sensor and the subsequent image processing is not affected by external factors.
For data acquisition purposes, the FLIR SC660 is positioned on top of an elevated platformwith direct line-
of-sight to the fire as depicted in Figure 7.11. The line of sight makes an angle of 45o with the horizontal
plane. In this setup, the data are processed and recorded in real-time by FLIR ResearchIR software, through
a cable connection to a desktop computer.

(a) experimental setup (b) top view of fire in straw fuel bed
Figure 7.11: Laboratory trials with FLIR SC660 mounted on an elevated platform.

The objective of this type of test centers on capturing the transition to a fire scenario, thus it requires a
high frame rate. In this case, the device was configured to 15Hz frame rate.

7.4.2 Caravan Burning Test

The caravan burning test comprises the burn of man-made fuels, unlike the remaining trials which only
include natural fuels. This scenario is important to take into account especially for airborne fire surveil-
lance in wildland-urban-interface regions. In addition, due to the presence of some materials like plastic,
the temperatures expected are much higher than those registered for wild fuel burning. The test was
performed with average values of relative humidity of 75% and temperature of 23oC. The wind velocity
was below 2m/s.
Akin to the previous trial, the device used for data acquisition was the FLIR SC660 operated in connection
with FLIR ResearchIR software with a 15 Hz frame rate. In this case the camera was mounted on a tripod
at ground level at approximately 10 m from the caravan, which is depicted in Figure 7.12.
To study this case, as fire related temperatures reach higher levels, the automatic gain control configuration
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(a) before flashover (b) after flashover
Figure 7.12: Caravan burning trial recorded.

was changed mid-trial to expand the measurement range to cover higher temperatures.
In this trial, unlike the previous example, there is not direct line-of-sight to the fire at the point of ignition,
which occurred in the interior of the caravan, as can be observed in the visible range image presented in
Figure 7.12a. Indeed, only after flashover, i.e. the point where the heat built-up reaches the maximum,
the fire starts to be visible in the visible range.

7.4.3 Summer Festival Trials

To design algorithms with robustness in real-world contexts, it is crucial to analyze data acquired in highly
dynamic scenarios. In that sense, a set of tests was performed at the venue of a festival outdoors in
midsummer, to emulate conditions of real operation of fire safety systems. The trials were conducted
in a region of dry weather in the summer, with strong winds and high temperatures, when conditions of
ignition propensity were consequently high as well. More specifically, during the period of the trials the
following meteorological conditions were registered: minimum humidity of 17%, maximumwind speed of
21km/h and temperatures up to 36oC.
The tests performed encompass the aerial surveying of the festival area at several different locations.
Figure 7.13 illustrates part of the venue surroundings, and provides some detail on the nature of the
camping areas. As can be observed, the festival occurred in the fire prone area, where the vegetation
of trees and shrubs are very combustible. Besides the vegetation, the inclusion of more combustible
materials such as tents, caravans increases fire risk which is exacerbated by the human presence, raising
fire safety concerns.
To provide aerial monitoring for several hours as to detect possible fire ignitions, the thermal camera was
installed on a tethered helium balloon, as depicted in Figure 10.6. With this setup, the experiments were
conducted at various locations of the venue to test distinct conditions. There were no fire events in these
field tests, so for the purposes of this study, the fire in the rocket stoves of the community kitchens was
used instead.
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(a) festival venue (b) camping areas
Figure 7.13: Festival venue and camping areas during the event where the trials were conducted.

Figure 7.14: Thermal camera setup on tethered helium balloon.

Concerning image acquisition, due to the limited payload budget of the balloon, only FLIR Vue Pro has
suitable weight to be installed onboard. The camera was programmed to capture images with a 5s time-
lapse, recording in the camera storage both the raw data and the pseudocolor images encoded with the
GrayRed color palette.
In contrast to previous trials, where the acquisition conditions were static, since these experiments em-
ploy an aerial platform, without active means of actuation for stabilization, the dynamics of the balloon
influence the image acquisition by varying the image field of view as a result of wind disturbances.

7.4.4 Mountain Range Field Trials

In addition to the previous experiments, several tests were performed in a real-world scenario in mountain
range field trials, to test the capabilities of the sensors in a long-distance monitoring scenario. For these
tests, the main interest is to evaluate the performance of a compact thermal camera, namely FLIR Vue Pro,
for future airborne monitoring operations. The trials were undertaken at an altitude of over 1000 m with
the following meteorological conditions: wind speed of range of 13-16km/h from NW, average relative
humidity of 45%, and average temperature of 21oC.
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Figure 7.15 illustrates the experimental conditions of the trials. The field experimental burns were con-
ducted in a hill with average slope of 25%, and comprised the burn of shrubland vegetation, including
common heather (Calluna vulgaris) and Baccharis (Baccharis trimera).

(a) perspective view (b) top view
Figure 7.15: Experiments in mountain range field trials.

Concerning the image acquisition, in the trials both thermal cameras were employed, but given the afore-
mentioned objective of these experiments in particular, this work only explores the data from FLIR Vue
Pro. The images were captured at ground level from across the valley at around the same altitude as the
field burnings, with direct line-of-sight between the camera and the fire at a distance of approximately
600m. The data acquisition was configured to record the data on the camera storage, saving both the raw
data and RGB encoded images with the GrayRed color palette at a rate of 1 frame per second.

7.5 Results and Discussion
This section presents the results of the application of the data-driven thermal imaging analysis to the
controlled fire experiments performed in laboratory and real contexts, according to the specifications
presented in Section 10.2. As previously introduced, the proposed approach explores raw-based features,
as well as the color-based features derived from the segmentation heuristic proposed in Section 7.3.

7.5.1 Laboratory Test

In the laboratory trial, under static conditions of image acquisition, it was possible to record with FLIR
SC660 the transition from a situation without fire to a fire scenario, through a high-rate sampling which
includes the point of ignition. This enables capturing the influence this phenomenon produces in the data
acquired.
Figure 7.16 depicts the evolution of the raw-based features that illustrate how to dynamic range expands
as the fire develops. In turn, it also demonstrates intuitively how the variation of the dynamic range
influences the color statistics of the images. The sample frames concern the transient stage immediately
before and after the start of the fire. Note that the first small peak around frame 80 occurs in a first
attempt at the ignition, but as the fire does not fully develop, the straw was reignited. The fast response
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of the sensor indicates that it is sensitive enough for this type of application.

100 200 300 400 500 600 700 800 900 1000
Frame Number

8191

32767

65535

D
ig

ita
l N

um
be

r

Rawmin Rawmax Rawavg

100 200 300 400 500 600 700 800 900 1000
Frame number

0

25

50

75

100

Im
ag

e 
P

ix
el

s 
(%

)

gray green red

frame 80 86 100 121 167
Figure 7.16: Feature-based representation of the sensor response of thermal camera to a fire ignition.

Attending to Figure 7.16, it is possible to identify that the sensor undergoes three distinct states: i) before
the point of ignition; ii) transient state; iii) steady-state. As indicated in the figure, at first the environment
is in equilibrium, with generally green levels corresponding to the mid-range. Note that the dynamic
range in this state is narrow since the incoming radiation originates predominantly from objects at ambient
temperature.
In the second stage, which is prompted by the fire ignition, the camera detects different strengths of
incoming radiation corresponding to a severe temperature gradient and as a result the dynamic range
starts increasing. This drives the adaptation of the color representation, according to the histogram-based
algorithms presented in Section 7.2.2. Consequently, the increase in percentage of gray pixels is prompted
by the fire ignition, which represented in red since it is the hottest object in the scene and has strong
emission of infrared radiation, whereas objects at ambient temperature remain at the previous raw level.
Third, a new equilibrium state emerges after the sensor stabilizes shortly after the beginning of the fire,
approximately at frame 167. However, in these circumstances due to the extended dynamic range the
color statistics have a considerably different representationwith a high percentage of grey shades in image
context.
For this case, it is important to take into account that this experiment captures the image sequences
with a frame rate of 15Hz, thus it is possible to record the transition between the equilibrium states. For
cases with lower sampling frequency, the data may not capture this behavior, but only similar conditions
resembling the first and third state.
Note also that although the dynamic range adapts over time its measurement range is not altered, as such
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the complete bit resolution is used in this configuration. Accordingly, since the measurement range is set
to -40 ∼ +550oC, the raw measurements saturate at a digital number that would correspond to these
temperatures, in this case these match the full bit resolution from 0 to 65535.

7.5.2 Caravan Burning Test

In the caravan burning test performed in an outdoor environment, as described in the experimental setup,
the image acquisition conditions were also maintained static, with the FLIR SC660 configured to capture
image sequences at 15 frames per second. While this setup also allows for a high sampling of the phe-
nomenon, in this case the fire ignition is not in direct line of sight, because it occurs inside the caravan.
For this reason, it is also necessary to characterize how these circumstances impact the behavior of the
thermal cameras in such scenarios. Moreover, the measurement range of the camera was adjusted mid-
trial to encompass an extended gamma of temperatures. Consequently, this allows the evaluation of how
the scaling of the bit resolution affects the raw digital data values.
However, before delving into the trial results, the effect of automatic temperature-dependent non-uniformity
correction (NUC) should be addressed. This method consists of an internal process employed in thermal
cameras to deal with spatial non-uniformity (NU) noise, which produces a fixed-pattern over the thermal
images, that varies in intensity due to the internal temperature instability of such cameras [106]. To that
end, on occasion the camera performs a NUC reset, which results in a disturbance in the data acquisition
process. Figure 7.17 exemplifies an instance illustrating this behavior along with relevant sample frames.
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Figure 7.17: Effect of temperature-dependent non-uniformity correction (NUC).

Attending to the selected window of the raw-based features depicted in Figure 7.17, it can be observed
that when the camera triggers the NUC reset, in frame 7143 the raw values exhibit a sudden drop, which
continues for several instants until frame 7147. Given that this behavior is sporadic but it is expected to
occur, as was verified for the case in the caravan burning test, appropriate filtering of this type of frames
should be included in the image processing pipeline in automatic systems, particularly if integrated in
autonomous navigation of robotic platforms for early detection and monitoring. In this work, a median
filter was used with a window of 15 frames, which introduces a one second delay in the case of FLIR
SC660, since this camera operates at 15Hz.
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Figure 7.18 illustrates the variation of the features extracted from the raw data, in comparison with the
color features derived with the color segmentation heuristic, for images encoded with a linear histogram
approach and the plateau equalization algorithm in the second and third graphs, respectively. The data
presented in the graphs was pre-processed to filter out the effect NUC frames. In this example we present
the sensor response for two automatic gain control methods: linear (L) and the plateau equalization (PE).
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Figure 7.18: Filtered sensor response of thermal camera to a fire ignition inside the caravan: (a) rawvariables; (b) color-based features with linear AGC (L); (c) color-based features with plateau equaliza-tion AGC (PE).

Observing Figure 7.18, the adjustment of the measurement range from -40 ∼ +550 to the upper tem-
perature limit of +1500 occurs at frame 3406 and has a prominent impact in the raw data, which can be
identified by the steep drop in the raw features at frame 3406. Notably, the scaling of the bit resolution
amplifies the measurement range but at first this results in a narrow distribution of the raw features at
lower bit values.
However, as the fire starts around frame 5100, the dynamic range begins to expand. With the evolution
of the intensity of the fire the dynamic range extends to comprehend higher values within the available
resolution, reaching amaximumof 52343 at frame 7736, corresponding to amaximum raw value of 60978
and minimum raw value of 8635.
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Subsequently, the sudden drop at frame 7782 indicates a second adjustment of the measurement range.
The flashover point occurs at frame 8310 and as a result the fire starts burning the exterior of the caravan
with greater intensity as can be seen in the corresponding frames (8400 and 9500). In addition, it can also
be verified that with the fire visible in plain sight the sensor response tends to stabilize.
Concerning the color-based features, the effect of the fire starts to be detected by the sensor around
frame 5236, as indicated by the increase in the gray pixel percentage, as had been verified in the previous
test. This occurs precisely when the fire burns a small hole on the upper right side of the exterior of
the caravan, as depicted in frame 5236. In frame 8400, it can be observed the effect after flashover,
where the fire can be seen in plain sight, causing the contrast in the scene to considerably increase. Even
with adjustments in the measurement range mid-trial the behavior of the color segmentation heuristic is
generally stable.
Comparing the response in terms of color features for the linear (L) and plateau equalization (PE) algo-
rithms, it becomes clear that the linear approach can detect the beginning of the fire in a prompt manner
as can be observed by the abrupt increase of the percentage of gray pixels. Conversely, for plateau equal-
ization algorithm the response occurs more gradually but it is still possible to detect the fire with this color
segmentation heuristic. However, this difference in terms of image-based features is an important aspect
to consider when developing intelligent fire detection systems to operate in real-time.
Following the analyses presented regarding tests performed in controlled environments, to validate the
insights exposed, the next sections concern field trials undertaken in real contexts.

7.5.3 Summer Festival Trials

In the tests performed at the summer festival, FLIR Vue Pro was installed onboard a tethered helium
balloon as illustrated previously in Figure 10.6. Although the movement of the balloon enabled surveying
a wider area of the venue, for several periods of up to 2 hours long, given that this unactuated aerial
platform moves according to the direction of the wind, the image capture is considerably less stable since
the field of view of the camera drifts due to wind disturbances. Due to payload restrictions there were
also no means of camera stabilization, therefore the sensor response for this set of data will inherently be
more stochastic.
Notwithstanding, since the proposed feature engineering approach does not rely on temporal dependen-
cies, but strictly features extracted from each frame, theoretically the proposed method is still viable for
images acquired frommobile platforms. Hence, the analysis of these experiments is paramount to validate
the applicability of this technique for integration in robotic perception pipelines for mobile platforms in
the context of wildfire surveillance tasks.
To that end, from several tests carried out at different parts of the festival venue, two examples were
selected to showcase representative situations encountered in real contexts. The first example, presented
in Figure 7.19, comprises a test in which fire situations were not detected, whereas the second case,
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depicted in Figure 7.20, covers areas without fire and also parts of the venue where fire is detected,
namely in the community kitchens where rocket stoves were installed. The images were recorded with a
5 second time-lapse between frames at an altitude from the ground of approximately 80m.
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Figure 7.19: Results for data acquired surveying the festival venue.

Observing Figure 7.19 in regard to the evolution of the raw-based features, it becomes clear that under
normal conditions the sensor of the camera does not exhibit significant variations. Considering that the
measurement range would allow sensing incoming infrared radiation up to a dynamic range of 16383,
i.e. the upper bound saturation level, the data demonstrates that in scenarios without fire, the maximum
and minimum raw values do not exceed 8841 or go below 7812, respectively. Note also that in these
trials ambient temperatures reach up to 36oC, so it is expected that the surface of objects captured in the
field of view of the camera may exceed that value due to the different absorption properties of materials
in such a heterogeneous context. Hence, including the raw-based features in detection and monitoring
algorithms is rather promising to avoid false alarms.
Conversely, since the festival took place in the summer, it is also normal to capture objects for cooling
purposes that are at temperatures below the average ambient temperature. While this does not seem
to have a considerable effect in the magnitude of the raw values, this effect can be observed attending
to the representation of the color-based features over time. More specifically, as different areas of the
venue are surveyed, the color statistics vary considerably, influencing predominantly the red and green
pixels percentages. For instance, attending to frame 365, it is possible to observe that a small set of items
at cool temperatures cause the adaptation of the color representation, making the surroundings become
depicted in red, even though there was not a sudden increase in temperature. In this way, since the
histogram-based algorithms promote highly nonlinear effects in image data, color-based features require
careful interpretation.
In turn, the sample frames presented also demonstrate that the appearance of red hotspots can be illusive,

105



as it does not necessarily mean that fire sources exist in the scene, but rather that these areas are slightly
above the average temperature. The representation of the color features takes this into account since it
considers in the color segmentation that the upper 45% of the scale is represented by red shaded tones,
as illustrated in Figure 7.10. The uneven distribution of colors in the GrayRed color palette also justifies
the behavior of the sensor mentioned in previous comment, namely regarding how the presence of cool
objects in the scene easily turn red the most dominant color in the image.
Concerning the second case represented in Figure 7.20, which includes situations at the venue where
fire is detected, the behavior of the sensor is consistent with the controlled fire scenarios previously dis-
cussed. In normal situations, the raw features follow the same behavior of the baseline case presented in
Figure 7.19, but when covering the community kitchen area the dynamic range expands due to the pres-
ence of fire sources. More specifically, regarding the complete sequence, the maximum raw value reaches
12477, the minimum raw value was 7918 and the maximum amplitude of the dynamic range, recorded in
a fire detection instance was 7290, which is well above the variations registered in the baseline case.
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Figure 7.20: Results for data acquired surveying the community kitchens area.

Accordingly, the color representation also suffers an abrupt adjustment, with the surroundings becoming
depicted mostly by gray pixels. This effect can be attested in the accompanying sample frames illustrating
the first detection instance, captured while covering the community kitchens area. Since fire was strictly
forbidden in the festival premises due to fire safety concerns, with exception for specific fires lit and con-
trolled by the organization for scenic purposes and the community kitchens area, the remaining detection
points in this sequence also concern the same area illustrated in Figure 7.20.
Considering that in these field trials the images were captured from a considerably longer distance than
the laboratory tests, the data demonstrates that the color scale adapts even when hot objects have low
spatial resolutions, which is essential to allow early fire detection in aerial surveillance scenarios. Therefore,
confirming the validity of the proposed approach for fire detection using mobile platforms.
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Furthermore, recalling that FLIR Vue Pro has a more limited measurement range, with a upper satura-
tion level at 150oC, this may raise some concerns regarding false alarms. However, under real operation
conditions no false detections were encountered.

7.5.4 Mountain Range Field Trials

In the field trials conducted in a mountain range, the images were captured from a longer distance than
in the previous tests. The purpose of these tests is to evaluate a key issue regarding the use of compact
thermal cameras, namely concerning its capabilities when operating outside the nominal conditions spec-
ified in the official hardware datasheets. The field trials performed allow the evaluation of the behavior
of the camera in a long-distance image capture setup, to assess if the signal-to-noise ratio in this scenario
is sufficient for fire detection applications. In this case, the tests were performed with FLIR Vue Pro con-
figured to record images with a 1s time-lapse, at a distance of approximately 600m, as specified in the
description of the experimental setup (Section 7.4.4).
From the several tests performed at the mountain range, two cases were selected for analysis, encom-
passing a situation with an active fire, which is presented in Figure 7.21, and another in the aftermath of
a fire, depicted in Figure 7.22.
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Figure 7.21: Results for fire detection at long-distance in a mountain range.

Regarding the monitoring of an active fire scenario, it can be observed in Figure 7.21 that the statistics of
the raw variables do not exhibit particular variation, remaining with an extended dynamic range for the
several minutes featured in this trial. Notably, despite the long-distance the sensed infrared radiation does
not suggest a significant signal attenuation, as the sensor bit resolution is used to a great extent. Indeed,
the maximum raw value registered is the sensor upper saturation level at 16383, while the minimum raw
value recorded is 7235, in this case corresponding to pixels representing the sky, as can be confirmed in
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the sample frames.
For this case, the evolution of the color-based features does not reveal particular changes and is consistent
with the insights exposed in the previous trials. The sensor response stays generally constant with slight
variations attributed to the change of field of view of the camera. The gray and green levels dominate the
image context and a reduced pixel percentage of red pixels depicts the area of the fire as can be observed
in the sequence of frames selected.
Although FLIR Vue Pro was not specifically designed for this type of task, these results validate the ca-
pability to detect fire sources at long-distance. In turn, an important aspect to take into account when
considering extended distances is that due to the limited resolution of the focal plane array, and conse-
quently the output image resolution, with the increase in distance the minimum size of the fire that can
be detected naturally increases also.
Since wildfires often extend over large periods and can be inactive after firefighting operations take place
but re-ignite before the fire event is completely extinct, the monitoring of areas in the fire perimeter
is important to prevent rekindles. In this context, the ground is usually at higher temperatures, adding
difficulty in pinpointing potential reignition spots.
The following test performed in the field trials targeting the aftermath of a controlled fire, which is depicted
in Figure 7.22, aims to uncover how these circumstances differ from the previous cases studied.
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Figure 7.22: Results for fire aftermath captured at long-distance in a mountain range.

Observing the time-series of the raw-based features, it is immediate to notice that the dynamic range is
reduced once again, but with a visible gap between minimum average and maximum values, unlike the
baseline case encountered in the festival trials. In contrast, in this case the maximum raw value extends
as high as 9782, the minimum raw value remains around 8141, and when the dynamic range is greater at
2426, the average raw value is 8569.
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Concerning the adaptation of the color-based features it should be noted that the field of view of the
camera was changed considerably to capture distinct parts of the monitoring area, as illustrated by the set
of sample frames presented in Figure 7.22. In this case, the green and gray percentages are predominant
when capturing the burned area, which is depicted in red in frames 13 and 60 because it is at a higher
temperature than the surroundings. The sky area remains depicted in gray, however, in contrast with the
situationwith an active fire, the ground is represented by a considerable darker tone of green. In that sense,
the color-based features alone do not evidence a difference from the previous case, which highlights that
the color segmentation heuristic has to be fine-tuned depending on the image capture setup, or defined
with more restrictive gamma for the green class. Interestingly, when the burned area is not in the field of
view of the camera, the ground is generally depicted in red, as can be observed in frames 51 or 94.
In turn, when facing downward on the valley, as illustrated in frame 48, the distance influences the color
representation, with closer objects represented by the bottom part of the image, and the gray part con-
cerning the mountain on the other side of the valley. This result shows that in addition to being capable
of detecting fire at long-distance, the thermal sensitivity of this sensor is also able to convey depth per-
ception. While this does not play a significant role in the detection in itself, it has interesting implications
for autonomous navigation by robotic platforms.

7.5.5 Discussion

From the analyses presented throughout this study it becomes evident that thermal cameras can poten-
tially bring improved reliability for fire detection andmonitoring systems on several aspects inwhich visible
range systems have limitations. On the one hand, the proposed data-driven feature engineering approach
that combines expert knowledge on the sensor working principles with color-based features derived from
processed image data demonstrated to be robust to false alarms, even when tested in highly dynamic en-
vironments. On the other hand, it was possible to validate the applicability of commercially-off-the-shelf
camera models in long-distance scenarios for fire detection applications, as verified the compact onboard
thermal camera.
However, adapting thermal imaging cameras for wildfire detection and monitoring systems entails an ad-
equate understanding of the application requirements and capabilities of each device, which changes
depending on manufacturers and camera models. Furthermore, considering UAV-based applications, the
integration of this type of devices in robotic perception frameworks is not straightforward, requiring knowl-
edge of the underlying processing image processing algorithms, which are highly nonlinear. For this reason,
based on insights gained from the comprehensive analyses presented several remarks deserve to be high-
lighted.
This work explored a series of automatic gain control methods available in the firmware and software
of thermal cameras, which are based on histogram-based algorithms for data compression and contrast
enhancement. In particular, testing the applicability of several alternatives in fire scenarios, the results
revealed that advanced contrast enhancement techniques degrade the ability to distinguish the fire from
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the surroundings, preventing an accurate identification of the burning area. Indeed, the linear approach
registered the best results, as identified in Figure 7.7.
Since histogram-based algorithms promote highly nonlinear effects in image data, color-based features re-
quire careful interpretation, because tracking the hottest areas can be misleading depending on the scene
context. In that sense, extending state-of-the-art color-based approaches [104] by including also raw-
based data provides enhanced situation-awareness, thus potentially enabling improvements in robotic
perception.
By testing the proposed method in distinct scenarios, under static image acquisition conditions and also
fromonboardmobile platforms (e.g. an tethered heliumballoon), it was possible to validate the approach in
both contexts. Nonetheless, for integration in robotic platforms it is advisable to employ means of camera
stabilization to minimize the effect of the external disturbances due to the movement of the platform and
consequent changes in the field of view of the camera.
In turn, the operating distance conditions of these sensors play an important role when applying heuristic
methods and as such the performance shall be fine-tuned depending on the image capture setup. More-
over, the characterization of the device in terms of sensor response is fundamental for this type of ap-
plication, because although manufacturers define nominal operating conditions, since fire is a source of
extreme temperatures, it is possible to successfully detect fire at long distances as well, since a high signal-
to-noise ratio is preserved.
Regarding the integration in robotic perception pipelines for autonomous navigation of UAVs, it was also
verified that the thermal sensitivity of these sensors is also able to convey depth perception. However,
in order to apply the methodology proposed in this work, the camera model has to provide access to the
raw data online, so that it can be incorporated and used in the image processing pipeline of the robotic
perception framework.

7.6 Conclusion
The study conducted in this work provides a comprehensive introduction to adapting thermal imaging
sensors for wildfire detecting and monitoring systems. Since these phenomena are increasing in inten-
sity and frequency there is increased urgency in the early detection, monitoring and surveillance of these
events. For these reasons, leveraging mobile robotics in this type of extreme environments requires de-
vising application-specific techniques.
For that purpose, this paper explored the foundations of image processing of thermal imaging, covering
the most used automatic gain control methods and the color mapping schemas responsible for generating
thermal images encoded in pseudocolor.
The proposed data-driven feature engineering approach combining expert knowledge about thermal imag-
ing sensors as well as color-based segmentation heuristics offers improvements in situation-awareness in
comparison to existing methods focusing only on one data type.
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The study of the response of thermal imaging sensor in fire scenarios as well as situations without fire con-
sidering raw sensor data as well as color-based features revealed fundamental to provide a better intuition
of the working-mechanisms of this sensors and the expected behavior under such conditions. By evalu-
ating how the features evolve over time, these analyses provided a clear understanding of the nonlinear
adaptive color scale, providing important insights relative to the sensing capabilities of commercially-off-
the-shelf thermal cameras. Thus, establishing a solid foundation for the development of robotic perception
algorithms.
Considering wildfire detection and monitoring are safety-critical applications, there is a great benefit in
exploring highly interpretable feature engineering approaches, in order to subsequently combine these
methods with intelligent soft sensor approaches, enabling better model understanding and interpretation.
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8.1 Introduction
The operational value of aerial means in wildfire support operations has motivated the increased use
of unmanned aerial vehicles for applications, e.g., aerial surveillance, fire detection, and mapping of fire
fronts [112]. Due to their low cost and high maneuverability, micro-aerial vehicles (MAVs) are becoming
an emerging solution to address these tasks, providing significant lower risks than manned aircraft [113]
while enabling a higher decentralization of efforts, which is a prime concern for extensive area coverage.
Being fire events hazardous, highly dynamic, environments, flying aerial robots in these contexts poses
tremendous challenges, making robot autonomy a prevalent matter, not only for the automation of safety-
critical tasks but foremost due to the inherent difficulties in performing complex missions in adverse con-
ditions.
MAVs navigating in these contexts often face paradoxical scenarios because although fire events can be
identified either by detecting fire or smoke, e.g., in long-distance operations or fire front mapping, the
latter often prevents the identification of the former in the visible spectrum [112, 114]. To address this
issue, with the developments in lightweight, compact thermal cameras, LWIR sensors are starting to be-
come increasingly used onboard remotely controlled MAVs in fire support operations. However, due to
the higher costs of these devices, comprehensive datasets with thermal images are still not widely dissem-
inated. Although there is emerging research in aerial pedestrian tracking [115], wildlife monitoring [116],
or precision agriculture [117], the thermal data characteristics for these use-cases differ considerably from
fire applications. Most uses of thermal cameras deal with identifying small temperature gradients and en-
hancing these relative radiometric differences with high contrast, a task thermal cameras excel at owing
to the employed automatic gain control (AGC) algorithms [108]. However, in fire scenarios there are high
temperature gradients which result in high variability and extreme values of sensor response, normally
reaching saturation levels of these sensors [118].
Towards increasing the levels of robot autonomy, perception systems need to be designed considering
these specific data characteristics to ensure robust deployments. However, building adequate test datasets
is difficult, time-consuming, and expensive to collect. To address this gap, this article introduces the MAV-
Fire dataset, a multi-view thermal-visual-inertial-GNSS dataset for MAV-based fire applications.
Our data collection efforts in building this field robotics dataset aim to contribute to support and further
the research and development of autonomous robotics solutions, namely for fire support operations. The
main contributions of the present dataset are threefold:

– multi-sensor data encompassing thermal radiometric and AGC-based RGB encoded thermal data, vi-
sual images, inertial measurement units (IMU), and GNSS receivers (one RTK), with variable sampling
frequencies;

– multi-view data acquired from an airborne vehicle, namely a MAV flying at a comprehensive range
of flight profiles, and two ground stations, that allow the further derivation of fire characteristics
and its relation to aerial-captured data in different modalities;
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– novel multimodal dataset for MAV-based robotics and fire applications based on field robotics ex-
periments that can empower the development of robust robotic navigation solutions and use-cases
in fire support operations.

The rest of this paper is structured as follows. Section 8.2 presents an overview of related work. Sec-
tion 8.3 describes the data acquisition systems and experiments. Section 8.4 covers the detailed descrip-
tion of the proposed MAVFire dataset. In Section 8.5, we reflect on possible applications of this dataset
and discuss known limitations, and Section 8.6 provides concluding remarks and reflects on directions of
future work.

8.2 Related Work
This section discusses MAV-based advances in fire applications and delves into thermal-enabled localiza-
tion and mapping for aerial robots. This is followed by a more narrow discussion focused on multi-sensor
calibration.

Fire Applications: Detection, Monitoring, Mapping

MAV-based fire applications have notably been an active field of interest over the years, with research
spanning from the development of automatic perception systems for fire detection, monitoring [119],
or fire front mapping [102], to cooperative strategies for multi-vehicle missions [120–122]. Although
previous efforts have focused primarily on evolving fire situational awareness [123], on-board processing
solutions and decision autonomy for guidance and navigation are generally still underdeveloped in field
deployments. The progress in cognitive robotics promises to enable missions with a greater degree of
robot autonomy with active perception in sensor-driven planning, and risk-aware systems.

Thermal-enabled Localization and Mapping

Towards autonomous navigation in field robotics, perception systems have evolved to perform VIO and
VSLAM in generic environments [124–127]. However, in many situations where risk to humans motivates
robotic solutions, the operating conditions can be very challenging, which can degrade the performance
significantly. Multimodal perception frameworks leveraging thermal LWIR data have been proposed to
tackle low illumination conditions [128–130] and the presence of visual obscurants [131, 132], such as in
night operations or in search and rescue scenarios in underground mines.
Although LWIR sensors are growing in applicability, open datasets containing thermal data for field robotics
are still scarce and designed for specific use-cases [116, 133, 134]. Moreover, thermal radiometric data
are not always distributed or representative of the full range of operation of these sensors, hindering its
use for applications that deal with extreme radiation sources such as fire scenarios. Additionally, with the
fire inducing sensor saturation, AGC algorithms stretch the pseudocolor RGB encoding over the full extent
of the dynamic range of the 14-bit or 16-bit resolution. Conversely, the high compression to 8-bit range
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Figure 8.1: MAV-based data collection. The multimodal sensor suite schematic (left) showcases sen-sor coordinate frames and extrinsic relations – each frame is labelled with the respective identifier, e.g.
mav0, cam0, imu0, etc.). Airborne sensor suite onboard the drone (right).

causes severe feature loss in image content, removing identifiable landmarks from the image [118]. To
address this issue, since the estimation of accurate robot localization and derivation of the environment
structure is critical to map the fire location and spread, this work proposes a novel thermal-visual-inertial-
GNSS dataset that enables harnessing the advantages of the several sensor modalities for improved reli-
ability.

Multi-sensor Calibration

To combine different sensor modalities, it is important to align asynchronous measurements with distinct
sampling frequencies and to perform spatio-temporal calibration between the multiple sensing systems.
Although multi-sensor calibration and time synchronization have been extensively studied, traditional cal-
ibration methods using noninformative algorithms often require previous knowledge of the operation en-
vironment and are generally time-consuming, onerous and cumbersome to perform in the field [133, 135]
in a pre-deployment stage. These processes become increasingly unfeasible when including additional
sensing stations/vehicles that would require lengthy calibration procedures. Furthermore, since calibra-
tion priors accumulate significant error over time [136], the validity of such would degrade considerably,
thus not justifying the repetition of these procedures to achieve a suboptimal result. Motivated by this, in
our dataset we leave multi-sensor calibration to be further explored with data-driven calibration methods.

8.3 Data Collection
For data acquisition, a set of field tests was performed to collect a comprehensive dataset of multimodal
aerial data during several MAV flights over controlled burns, which was complemented with additional
views from ground-based stations. The experiments aim to aggregate a series of scenarios relevant for
MAV-based fire applications. These trials were performed with specific known conditions, to allow an
accurate evaluation of how robotic perception approaches cope with these challenging scenarios. In that
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sense, these trials allow characterizing the sensor response in fire scenarios and assessing the impact of
the altitude on spatial resolution and on visual and thermal data measurements. The next sections present
the details of the data collection systems and field tests performed.

Systems Overview

Controlled burns field tests were performed in an airfield. A commercially available MAV platform was
used, namely DJI S900 hexarotor, equipped with a Pixhawk 2.1 Cube Black flight control unit (FCU) and
a GNSS receiver, connected to the ground control station via telemetry radio. To achieve the goals of the
field tests, the MAV was teleoperated via radio control to ensure the desired altitude levels were reached
and that an immediate controlled landing could be performed if required by the airfield control tower.
Onboard data collection included all flight log variables recorded by the FCU. For the MAVFire dataset,
the IMU and GNSS data were selected, each with the respective sampling of 25 Hz and 5 Hz.
The aerial sensor payload was designed as an independent unit to be carried on-board the multirotor
in a leveled, downward facing pose (Fig. 8.1). The payload includes a Jetson Nano on-board computer,
connected via USB3.0 to a Stereolabs ZED Mini stereo visual range camera with internal IMU, sampled
at 15 Hz and 500 Hz, respectively. Note that the right-hand side camera of the visible stereo-pair was
not recorded. For thermal data acquisition a FLIR Vue Pro camera was used. The thermal camera was
juxtaposed with the Stereolabs camera, geometrically aligned with the left camera of the stereo pair and
captured images at 5 Hz. For a benchmarking test, this camera was connected to a Pixhawk FCU to record
synchronized attitude and GNSS-RTK georeferencing data, with a 5 Hz sampling frequency.
In addition to the multimodal payload onboard the MAV, two stationary ground stations were equipped
with thermal and visual range cameras, one station at ground level and the second placed on an elevated
platform. The visual sensors used are generic video cameras, namely Sony FDR-AX53 and Sony HXR-
NX30F, recording at 24 Hz and 25 Hz, respectively. For thermal data acquisition, the ground stations
used FLIR SC640 and SC660 cameras, both connected independently to desktop computers with the
required proprietary data acquisition software (FLIR ResarchIR), recording at 15 Hz.

Experimental Setup

The experimental trials conducted in a controlled airfield allowed the MAV to safely perform a wide vari-
ety of altitude profiles and horizontal paths that would allow testing the multiple sensors. Several flights
exceeded the regulated 120 m altitude, being the maximum altitude reached ≈250 m. Given the compli-
mentary nature of multimodal sensors, it was particularly important to design experimental setups that
allowed to collect representative data of challenging instances to enable the understanding of how differ-
ent data modes can potentially influence the perception element in autonomous robotics tasks.
To complement the data acquired with the hexarotor depicted in Fig. 8.1, the two additional ground sta-
tions were placed around the working area where the fires were being set up, adding two additional
viewpoints equipped with both thermal and visible range cameras. The position of such ground stations is
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Figure 8.2: Data collection in field experiments from multimodal systems,including airborne and ground stations.

illustrated in Fig. 8.2, respectively in the left and right side of the image demonstrating the working area.
The two ground stations were installed at closer distances to the controlled burns to capture relevant fire
characteristics that can be derived using the nearby vertical markers.
For each trial, one or multiple fire ignitions were held using a mixture of dry shrubs as fuel (moisture
content ≈12%), under favorable weather conditions with high visibility and minor wind influence (aver-
age 1m/s). The experiments were carried out so that during each trial the fire had various specific known
perimeters and flame heights and lengths, enforced by physical constraints and by refueling as needed,
respectively. The set of experiments comprehends small fires with a wide variety of spatial and temporal
characteristics.

8.4 MAVFire Dataset

Dataset Description

The MAVFire dataset results from a set of six independent experimental trials. These experiments were
performed over the course of two days and at different moments of the day. As described in the previous
section, we employed a total of three independent multimodal sensor systems, one placed on the MAV
(mav0) for aerial data acquisition and two stationary ground stations (gs1 and gs2). Note that the order by
which these experiments were performed does not relate to the order by which they appear in this text,
nor with their numeric identifier.
The experiments conducted comprise a comprehensive array of situations as is summarized in Table 8.1,
e.g., single fire ignitions, multiple fires, with synchronous and asynchronous ignitions, as well as varied
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spatial configurations. In addition, the flights performed allowed the introduction of variability in the
altitude profiles (showcased in Table 8.1) but also purposeful movement on the horizontal plane.

Table 8.1: Summary of experimental trials featuring key characteristics and flight altitude profiles.
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

fire: single ignition
views: aerial

fire: multi-spot
views: aerial

fire: fire + active extinction
views: aerial

fire: multi-spot
views: aerial + ground

fire: multi-spot
views: aerial + ground(x2)

fire: fire front + async. ignitions
views: aerial + ground(x2)
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A fundamental goal of the experiments was to characterize the multimodal sensor responses in multiple
relevant conditions while onboard theMAV (see Table 8.1, trials 1, 2, and 3). The tests then evolve tomore
complex scenarios (see Table 8.1, trials 4, 5, and 6), which in addition to the MAV aerial view also allow
the introduction of multi-view localization and mapping problems, by the addition of the ground stations
data. The complete summary of which sensor data are provided for each dataset sequence is compiled
in Table 8.2, where the sensor identifiers relate to the devices presented in Section 8.3.

Table 8.2: Summary of data provided for each trial.
mav0 gs1 gs2

gnss0 imu0 cam0 imu1 tcam0 gnss1 cam1 tcam1 cam2 tcam2 gnss2 imu2

Trial 1 ✓ ✓ ✓ ✓ ✓

Trial 2 ✓ ✓ ✓ ✓ ✓

Trial 3 ✓ ✓ ✓ ✓ ✓ ✓

Trial 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trial 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trial 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data Modalities

The cornerstones of this dataset with respect to the state-of-the-art are its rich thermal and visual data
elements, which combined with GNSS and inertial data can allow significant improvements in navigation
and mapping tasks since the perception layer is crucial for both. However, significant progress has yet to
be made particularly in integration of thermal cameras. As such, to promote further avenues of research,
the raw data are included. For data accessibility reasons, we also provide two pre-processed RGB encoded
modalities of the raw thermal frames. Fig. 8.3 showcases a set of samples to exemplify the distinctions
between the data types: visual and thermal RGB-encoded modalities. To that end, the raw thermal data
were processed with two distinct automatic gain control algorithms and encoded with two different color
palettes. The first uses a linear AGC algorithm and applies a divergent color palette (greyred) for RGB
encoding. The second employs a plateau equalization algorithm for AGC, followed by application of a
sequential and monochromatic grayscale color palette. For a fully-detailed, in-depth explanation of these
procedures please refer to [118, 137], which also demonstrates the effectiveness of the linear + greyred
approach for fire applications. Conversely, since the grayscale approach is widely used for encoding ther-
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mal data used in robotics applications, it justifies its inclusion in the dataset as its applications extend
beyond fire-tasks.

(a) Aerial view (mav0) (b) Elevated platform view (gs1) (c) Ground-level view (gs2)
Figure 8.3: Dataset example: Samples from trial 6 featuring three different view points. The trial startswith a fire front and multiple additional fire spots are ignited asynchronously. The top row illustratesvisible range data, whereas the bottom row, juxtaposes for comparison the two rgb encoded thermalframes. Note that the grayscale sample from the aerial view clearly depicts the fires as seemingly largerin spatial size.

Data Formats

The heterogeneous sensors used for data collection yielded data in a wide variety of formats. This results
in the need for a series of data retrieval and pre-processing procedures to generate a uniformly formatted
dataset. Since this dataset can be of use to several communities, e.g., ranging from robotics and artificial
intelligence to fire domain fields, it is important that the available data uses common formats, e.g., png,
tiff, and csv. All data pertaining to relevant device configurations, sensor parameters or general trial in-
formation, are encoded in yaml files for convenience of importing such data in subsequent post-processing
or development pipelines. All time-series data are provided in data.csv files for each sensor, where the
first column stores the timestamp in Unix time in second units but encoded with higher sub-second pre-
cision. The variables are generally in SI units, unless specified otherwise, e.g., in pose or orientation data.
For image-based data, all files are named with the respective timestamp in Unix time in second units with
respect to the device clock. This means that two sensors, e.g., cam0 and tcam0, can have image files with
the same name. However, one should not assume a priori these are from the same time instant, as sen-
sors are not synchronized. If this is relevant for the application, appropriate temporal sensor calibration
to estimate the appropriate timing offsets between data sources should be conducted. The files related
to each sensor are stored separately to promote the modularity within the dataset, but are also compiled
on a system-level basis in bag files.

Dataset Structure

The dataset is organized by trial, comprising six distinct data sequences. For each, there are subfolders
for each <system_id> (e.g., mav0, gs0), under which the sensor subfolders are organized (e.g., cam0, tcam0,
imu0, etc.). Within each sensor subfolder there are csv and yaml as previously outlined. For camera sen-
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sors (e.g., cam0, tcam0), the raw image data are provided in raw_frames subfolders, in their respective for-
mats, as well as a raw_frames.csv. Additionally, thermal data which involved a further processing step
described in Section 8.4, features the preprocessed data in subfolders with the following name format-
ting, encoded_<agc_alg>_<color_palette>, yielding then:

– [raw_frames]

– [encoded_linear_greyred]

– [encoded_plateau_eq_grayscale]

– [raw_frames.csv]

Besides the information contained in the dataset directory, for each <system_id> a bag file is provided.

8.5 Dataset Applications and Limitations
While the MAVFire dataset aims to address an existing gap in field robotics research for fire applications,
and more generally in thermal-enabled robotic perception, the use of this resource can extend to a variety
of subtopics in robotics research and beyond.

(Multi-)Sensor Calibration

By providing the raw data without pre-processing it with a given multi-sensor calibration approach, this
dataset can support the development and benchmark of novel approaches to problems in this realm, from
the improvement of single sensor calibration approaches that can have a great impact in improving image
registration and georeferencing, to the calibration of the full array of sensors presented.

Robot Robust Navigation

As noted in the introduction, multimodal perception is increasingly seen as a pathway towards achieving
robust navigation and dealing with challenging and hazardous applications. However, dealing with spe-
cialized sensors, be them thermal, or multispectral in general, results in different challenges as the field is
still in an early stage. With the decreasing costs of these technologies and its uptake in robotics research,
by providing situations with extreme sensor measurements, this dataset can play a role in increasing the
robustness of robot navigation.

Fire Detection, Localization, and Mapping

To extend the use of the dataset beyond specific robotics inner-workings, the dataset was built with higher
resolution than possibly was needed for perception in visible range. That option emerged from recognizing
that the image content includes a diverse set of elements, e.g., fire, smoke, car, truck, human/operators,
road, vegetation, which are relevant for data annotation tasks or could be useful also for developing intel-
ligent algorithms for other robot-assisted applications involving detection, localization and mapping.
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Known Issues and Future Directions

Although comprehensive for multimodal perception in general, the current dataset still lacks some in-
stances with higher scale of the scenarios as the intent is its application to fire support applications. How-
ever, the sensors used saturate in these conditions, so a similar behaviour is expected in scenarios with
larger burns and higher fire intensity.
Concerning data acquisition, a key takeaway from our experiments was that if we wanted to pursue higher
sampling data collection, higher processing power from the on-board computer and on-board storage
units would be necessary. In that regard, some missing data is to be expected in the data sequences, as
sometimes the writing speed and recording processes do not complete fast enough to ensure perfectly
sampled sequences.

8.6 Conclusion
This paper presents the MAVFire dataset, an aerial thermal-visual-inertial-GNSS dataset for MAV-based
robotics and fire applications, envisioned to support the advancement on intelligent robot autonomy, par-
ticularly in this domain. The multimodal dataset was created from controlled burns field experiments
comprising several flight profiles and relevant fire scenarios, designed to aggregate a series of sequences
that presented challenges for robotics perception pipelines.
With the growing interest in leveraging aerial robotics for wildfire support operations, we believe that the
release of this dataset is an important stepping stone towards robot autonomy in these environmentally
challenging scenarios and will be of great value for testing and evaluating different algorithms for field
robotics deployments.
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Summary
This part focuses on intelligent systems approaches for wildfire detection andmonitoring,
and is organized in two independent chapters exploring two distinct data-driven meth-
ods. Chapter 9 explores a wildfire detection solution for visible range data based on deep
neural networks that harnesses a transfer learning approach on augmented datasets. In
turn, Chapter 10 is dedicated to devising intelligent techniques for fire monitoring us-
ing thermal data, namely using a data-driven fuzzy modeling approach based on fuzzy
clustering.
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9.1 Introduction
Over the years, with the evolution of remote sensing technology, there has been continued interest in
applying computer vision methods to fire hazard identification and risk assessment research. The appli-
cations include, e.g., forestry inventory [138], fuel mapping [139], burned area maps [140], and wildfire
detection [141].
Recently, in the wake of the advances in the field of artificial neural networks, deep neural models have
become the state-of-the-art in a variety of computer vision problems. The current success of this type of
architectures in highly complex tasks has opened up the range of their potential use cases and is paving
the way for the application of these models to real-world challenges.
The renewed interest in deep learning architectures such as convolutional neural networks (CNNs) came
as a result of two determinant factors. First, storing data has become inexpensive and is no longer a
twenty-first century problem. On the other hand, it is not humanly possible to perform data analysis on
all data without using artificial intelligence. Second, a process as data-intensive as image processing using
CNNs became viable by the parallel computation power provided by graphics processing units, which
accelerate the learning and inference stages.
However, although deep learning models have achieved state-of-the-art results in a variety of closed-set
problems, the application of this approach to open-set problems is still in early stages. More specifically,
a known drawback of this approach concerns requiring large datasets for model development, hence the
limited amount of data for specific applications is a common hurdle in applying deep learning approaches
to real problems.
In this context, several recent works propose the use of these architectures for early fire detection, which
is an application with high potential benefits as fire hazard has severe impacts on a global scale. Con-
versely, image databases for fire detection for benchmark is still an evolving topic, since there is not yet a
large-scale dataset for this problem, but there is a growing interest in that direction namely with several
contributions in the literature on a smaller scale and open or public-domain sources.
Themain objective of this investigation is to further the development of expert systems for early detection
of fire events. In that sense, this work centers on exploring a transfer learning technique based on deep
neural networks, to handle the limitations of current open-source databases for this application. Being
wildfire detection a time-critical application understanding model limitations is paramount for the imple-
mentation of intelligent systems in real contexts. For this reason, this article undertakes an in-depth study
of the challenges facing the application of this type of models, namely in wildland-urban interface regions.
Since the rapid detection of an original fire event ignition significantly increases the efficiency of a first
intervention, early fire detection systems can help avoid the occurrence of large burnt areas. In this way,
the potential impact of the integration of intelligent algorithms in decision support systems for firefighting
and civil protection as well as fire self-protection systems with automatic detection can have a significant
contribution to mitigate the social, cultural, environmental and economic effects associated with wildfires.
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9.1.1 Wildfires in Wildland-Urban-Interface areas

Wildfires are recurrent natural disasters, which have a brutal impact on the environment and natural
ecosystems. These phenomena have drastic effects on communities on social and economic levels, since
these can lead to the loss of lives and material damages.
With the increasing effects of climate change, the conditions for fast initial spread rate are more frequent,
driving a rise in the number of events that escape to the initial firefighting. These conditions also aggravate
the severity of fire events, leading to extensive spread with multiple fire fronts and episodes of extreme
fire behavior.
Recently, massive wildfires hit different regions across the globe, with a particular incidence in wildland-
urban-interface (WUI) areas. At the end of 2017, a series of fires struck Southern California, with over
100 kha burned. The Thomas Fire advanced for over a month, only being extinguished after 39 days, and
accounting for 114,078 ha of area burned [142]. In 2018, the situation was similar in Northern California
with fire events such as the Mendocino Complex Fire reaching almost 200 kha [143].
In Portugal, the scenario was likewise dramatic with more than 250 kha of area burned and an unprece-
dented number of fatalities with more than 115 deaths, only in two fire occasions - Pedrógão Grande
in 17Jun2017 [144] and Fire Events of 15Oct2017 [145]. To illustrate the extent of the affected areas,
Fig. 9.1a depicts the fire hazard report released by ICNF (Institute of Conservation of Nature and For-
est) in February of 2017 [146], whereas Fig. 9.1b illustrates the burned area over the course of the same
year [147].

(a) hazard map adapted from [146] (b) burned area map adapted from [147]
Figure 9.1: Comparison between fire hazard assessment and burned area maps.

Despite the identification of areas with elevated fire hazard, and meteorological reports warning of time
periods of critical danger for the occurrence of fire events, the extensive devastation caused by these
incidents is of major concern, as Fig. 9.1b demonstrates. Since a fire occurrence is by nature a process
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with a high degree of uncertainty, both on spatial and temporal levels, it is difficult to pinpoint the ignition
locations in a short time-frame. Therefore, the communication of the detection of fire outbreaks is key to
allow a prompt action from emergency response teams on the ground and minimizing its consequences
[148, 149]. In that sense, since the greater concern lies in WUI areas, the focus of this article is on vision-
based fire detection in rural environments.

9.1.2 Related work

Image-based algorithms for fire detection have been extensively explored in the computer vision domain.
There is a plethora of different approaches that propose color models for flame pixel classification using
RGB [150], YCbCr [151], HSI [152] or the YUV [153] color spaces. Additionally, other approaches employ
temporal and spatial wavelet analysis [154, 155].
Although classical computer vision algorithms can register high success percentages in classification, by be-
ing based on fine-tuned heuristics they lack the generalization to be successfully applied to new datasets
and different scenarios [156]. To mitigate this limitation, researchers increasingly employ computer vi-
sion algorithms in tandem with intelligent systems approaches. As noted by Cetin et al. in their review
of video-based fire detection [94], from 2007 onwards most of the approaches integrate intelligent sys-
tems, e.g., fuzzy c-means clustering for selection of smoke-regions [157], and support vector machine
classifiers [158].
Recently, with the uprise of the prominence of convolutional neural networks (CNNs) more contributions
employ these architectures. The results reported for fire detection using CNNs demonstrate the merit of
the approach, with high success percentages. Frizzi et al. propose a CNN architecture similar to LeNet-5
but that incorporates dropout and LeakyReLu activations [159]. However, despite reporting a 97.9% on a
testing set of 5585 images, the article does not provide access to the database neither presents a proper
characterization of the datasets used, thus the generalization of the model is unclear. Recent works also
propose CNN architectures inspired by state-of-the-art models like AlexNet, and employing video-based
datasets [148], or propose solutions with smaller datasets by exploring transfer learning approaches, using
pretrained models such as VGG, or ResNet [160].
While deep learning (DL) models have proven efficiency in several closed-set problems, the application
of these techniques to open-set problems is still in early stages. The limited amount of data for the fire
detection problem is still a major challenge for training deep neural networks, and is a common hurdle
in applying DL approaches in a real context. Previous works focused on fire detection also faced this
limitation, with most resorting to images downloaded from web and social media platforms, which allow
for keyword searches, such as Google or Flickr [160, 161]. Alternatively, other works resort to video
datasets available in the literature [148, 162].
However, the aforementioned studies built datasets of fire instances irrespective of the scene context,
e.g., fires in urban scenarios, in riots, industrial fires, or even fires in an indoor setting. Trained on these
scenarios, the deep neural models learn from samples that are not representative of wildfire detection,
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e.g. forest and vegetation, characteristic to rural regions.
While these contributions report high success percentages, the use of imbalanced datasets and/or video-
based datasets provides a limited variety between the samples, which undermines the significance of
the results. In this way, the performance may not offer guarantees regarding generalization to different
scenarios.

9.1.3 Proposed approach

Wildfire detection poses challenging problems that differ from general fire detection developed for image
surveillance systems in indoor environments. In outdoor settings, the fire detection task inherently be-
comes more difficult due to e.g. the environment being highly dynamic, having varying light conditions or
reflections on natural or man-made objects, or seasonal changes. This means that both ad-hoc methods
and data-driven expert systems developed for video surveillance in indoor environments are not adequate
for forest fire detection, because in a different context these would not match the same performance guar-
antees.
Conversely, computational vision methods require extensive time to develop robust feature extraction
pipelines, whereas application-oriented deep neural models require large-scale datasets, which hinders
achieving accurate frameworks that can be valuable for operational use. Although recent works in cur-
rent literature based on deep learning architectures demonstrate improvements regarding accuracy and
computational efficiency, there is still a lack of understanding of the limitations of these models in real
scenarios.
To address that gap, this work centers on addressing wildfire detection in wildland-urban-interface ar-
eas, and studying the challenges specific to this type of task. To overcome data limitations, we sourced
databases from different stakeholders to build an adequate database for training and performance evalu-
ation. Moreover, we devised a data augmentation procedure to introduce variations in translation, distor-
tion and scale, increasing the difficulty of the classification task.
This paper proposes a transfer learning approach towildfire identification inWUI areas, using the Inception-
v3 model pretrained on ImageNet [163]. This model is retrained on an open-source database, the Por-
tuguese Firefighters Portal Database, and evaluated with tenfold cross-validation. Furthermore, the Cor-
sican Fire Database [164] is used as a benchmark for testing the best model obtained. This paper performs
an in-depth study of the results by highlighting limitations in a number of common situations that must be
addressed and solved before the application of deep neural models in a real context. The main advantages
of the proposed framework are that it allows targeting this application with smaller datasets and with re-
duced computational load, while the testing setup using cross-validation enables testing a state-of-the-art
deep neural architecture in a diverse and representative set of data.
The main contributions of this work are threefold: (1) identify the difficulties and shortcomings of state-
of-the-art fire detection research, and assess issues related to the quality of the databases; (2) leverage
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open-source or public datasets of real fire events using a transfer learning approach coupled with data
augmentation techniques tested using tenfold cross-validation; and (3) present a comprehensive study of
the causes of misclassification, revealing important insights for the development of future work.
This paper is organized as follows: Section 9.2 presents the Inception-v3 model used. Section 9.3 intro-
duces the open-source datasets employed. Section 9.4 presents the methodology followed to formulate
the classification problem, perform data augmentation, and model evaluation. In Section 9.5 the results
are analyzed and discussed and Section 9.6 presents the conclusions.

9.2 Deep Neural Networks
Deep neural networks (DNNs), in amodeling sense, are a class of nonlinearmodels capable of learningmul-
tiple levels of abstract representations from raw data without the use of expert knowledge. These models
can have different learning schemes, but all make use of a set of methods known as deep learning [165].
Unlike classical neural networks, which require prior feature extraction, DNNs handle the feature extrac-
tion within the model. DNNs obtain the deep denomination as a result of stacking multilayers, and are
capable of dealing with raw high-dimensional data, e.g. images, text, sound, or video.

9.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of feedforward DNNs inspired in the animal visual
cortex. The term was first introduced by LeCun when he proposed LeNet-5 [166], inspired by the neocog-
nitron proposed in 1980 by Fukushima [167]. LeNet-5 comprises convolutional and pooling modules for
feature extraction, fully-connected layers, and a softmax classifier, which represent the fundamental build-
ing blocks of CNNs.
The structure of the fully-connected (FC) layer is based on the architecture of classic neural network mod-
els like the multi-layer perceptron. In fully-connected layers, the neurons in adjacent layers have pairwise
connections, but despite their name, neuronswithin a single layer do not share connections between them.
Due to their amount of connections FC layers are very computationally expensive. Therefore, these are
used sparingly in CNNs, and usually at the penultimate layer before the classifier.
Convolutional layers are the main building block of CNNs and are responsible for extracting representa-
tions from the data as it flows through the network. As illustrated in Fig. 9.2, this type of layer computes
the dot product between patches of the input volume and the weights of the filters. The dimension of the
input and output volumes reflects the usual application of this type of layer that reduces data in spatial
size and increases its depth.
Due to their parameter sharing scheme (Fig. 9.3), where neurons in each depth slice share the same
weights, the network has translation invariance. The output volume of this layer, see Fig. 9.2, stacks
the activation maps of the different slices of neurons, which extract distinct features.
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filter

input volume convolutional layer output volume

Figure 9.2: Example of a convolutional layer.

depth of convolutional layer 

Figure 9.3: Parameter sharing scheme.

Pooling layers are also employed for subsampling of the featuremaps to extract themost relevant features
at specific points of the network.
In the last few years, the resurgence of the interest in CNNs came about after AlexNet [168], a deep
convolutional neural network, won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) con-
test [169]. The model proposed a combination of strategies to make training faster using Rectified Linear
Units (ReLUs) instead of sigmoidal activation functions, and leveraged GPU parallel computation for time
efficient training. Additionally, to reduce overfitting, the model employed data augmentation techniques
in order to generate more training samples, and a new regularization method called dropout. This marked
a pivotal point in this field, to the extent that most of these techniques have become a standard for train-
ing DL models. On the footsteps of this success, in the following years, the top ranks were dominated by
other CNN models, e.g. GoogleLeNet [170], VGG [171] and ResNet [172].

9.2.2 Pretrained models

The top-tier results achieved using CNNs in computer vision tasks were accomplished with large datasets,
e.g., benchmark datasets such as ImageNet [173], CIFAR [174], MNIST [175]. This point is critical to the
performance and versatility of DL models. On the one hand, since neural networks learn from examples
they inherently become more accurate and robust when they have a larger set to learn from. On the other
hand, having a comprehensive input space is also of concern because models are more likely to fail in
the testing stage when they are given new inputs out of the input space. Therefore, when working with
supervised learning models, it is imperative to be aware that these models excel at generalization but are
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not able to extrapolate for data for which they have not learned to extract representations.
However, by highlighting the importance of dataset size, it is critical to point out that applications to
real-world problems are often hindered by insufficient data. Although these are growing by the day, large
datasets often take years to build, and even on a small scale, data acquisition depends on the collaboration
between stakeholders from different fields. Moreover, while data is a 21st century commodity, there are
still many challenges regarding data collection, compliancewith privacy laws, and open-access. To increase
the amount of data and overcome such limitations, several DL techniques will be employed including
transfer learning and data augmentation.

9.2.3 Inception-v3

The Inception-v3 model (Fig. 9.4) is a deep neural network that is built modularly, by means of a stack-
ing of parallel convolution structures known as Inception modules [163]. These employ several different
convolution factorization schema depending on their relative depth location in the network and provide
different hierarchical levels of feature extraction. Inception-v3 has 5 types of layers for feature extraction
purposes, i.e., fully-connected, convolutional, two types of pooling layers (max and average), the dropout
layer, and a softmax classifier. The diagram with the compressed view of the network divides it into two
parts, the first responsible for extracting spatial features (A-F) and the second corresponding to the clas-
sifier.

x 3 x 4 x 2
Block A Block B Block C Block D Block E Block F

Convolution
Max Pooling

Average Pooling
Concatenate

Dropout

Fully Connected

Softmax

Figure 9.4: Inception-v3 network architecture.
To perform transfer learning, the classifier part of the network will be retrained. The softmax is the score
function responsible for generating the predictions of the model. This function is given by:

ŷk =
exp(zk)∑K
i exp(zi)

, k = 1, ...,K (9.1)

with k representing the index of the class label. For every input of the output layer, zk, the softmax
will generate K class prediction scores, ŷ. The numerator acts the same way as a sigmoid function, by
squashing the inputs to values between 0 and 1, while the denominator normalizes the continuous-valued
output by limiting the sum of all the class probabilities to be bounded between 0 and 1 as well.
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The formulation of the optimization problem for readjusting the parameters of the last layers consists
in finding the weights and biases that define the mapping between the inputs and the correct outputs.
To that end, the objective function will minimize the error between the prediction of the model and the
ground truth labels.
The loss function quantifies the distance between the predicted outputs, ŷ, and the ground truth labels,
y. For this model, the loss is computed using the cross-entropy function, which is calculated as:

L(y, ŷ) = −
∑
k

yk ln(ŷk) (9.2)

9.2.4 Model evaluation

The performance benefits obtained by trainingwithmore samples, coupledwith the computational burden
associated with training DL models, usually dictates performing a single split into training/validation/test
sets.
While cross-validation is used extensively for evaluation of shallow models, it is seldom applied to deep
models, since the computational cost increases k-fold. However, considering that a transfer learning ap-
proach enables retraining with a small dataset with a less demanding computational load, cross-validation
becomes a viable option.
For small datasets, performing a single split into training/test, e.g. 70/30 subsets, entails testing themodel
on only 30% of an already restricted number of samples, which could give place to a relatively noisy
estimate of model performance [176].
In opposition, by dividing the data into k-folds, the data are fit inK−1 parts of the entire dataset and vali-
dated with 1 alternating fold. For each iteration, this yieldsK different models, and the performance mea-
sures are averaged over all folds, giving a more representative estimate of the classifier performance [177].
Themost usedmetrics to rank classifiers are scalar performancemeasures e.g. accuracy, precision, sensitiv-
ity, specificity, or F-score. These performance measures are computed based on a confusion matrix which
accounts for the number of true positives, false negatives, true negatives and false positives. However,
by relying on a fixed threshold and being independent of class priors, these measures can be misleading
when working with skewed datasets.
Conversely, recalling the softmax classifier evaluates the degree of confidence in classification according
to a posterior probability, i.e., it generates a continuous-valued output, this enables using an alternative
performance metric, the receiver operating characteristic (ROC) curve.
ROC curves represent the trade-off between hit rates and false alarm rates, i.e., the compromise between
true positive rate and false negative rate [178]. Albeit its original use in signal detection theory for binary
classification problems, they have for long been widely adopted by the machine learning field to evaluate
classifier performance.
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The prediction scores are discretized using variable threshold values, which allows tuning the latter to
optimize classification performance.

9.3 Databases
The following sections present the datasets used in this work and their characteristics. Moreover, sec-
tion 9.3.3 references other open-source databases available in the literature.

9.3.1 Portuguese Firefighters Portal Database

A Portuguese media outlet dedicated to supporting the work of firefighters provides on the webpage
Bombeiros.pt an image database categorized in fields associated with firefighting activities such as: fire
events, accidents, aerial support vehicles, firehouses, emergencies, etc. Herein we refer to this database
as the Portuguese Firefighters Portal Database (PFPDB). The data are publicly available online and new im-
ages are regularly published, offering at the time of thiswriting 25,157 images and 454 subcategories [179].
For this work, the subfields related to forest and rural fires were selected, corresponding to a total of 3,900
distinct images.

Figure 9.5: Samples of fire (top row) and not fire (bottom row) from PFPDB.

Note that the samples depicted in Fig. 9.5 have been cropped and reshaped to squares from the originals
available at the website. The latter are watermarked and have varying portrait and landscape aspect ratio.
The preprocessing steps to work around this constraint are detailed further along in Section 9.4.2.

9.3.2 Corsican Fire Database

The Corsican Fire Database (CFDB) is an online image database to support wildfire research, which pro-
vides a testing dataset for comparison of computer vision algorithms [164]. It strives to be an evolving
dataset, and as of March of 2018 is composed by 500 visible range images of wildfire, 100 pairs of visible
and near infrared images, and also 5 multi-modal sequences of 30 pairs each.
In contrast with the database presented in Section 9.3.1, this dataset is composed solely by fire images.
Samples of this database (see Fig. 9.6) will be used for testing in the performance evaluation stage, despite
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Figure 9.6: Rescaled samples of fire images from CFDB.

not having situations without fire.

9.3.3 Other open-source datasets

The fact there is a lack of large-scale datasets for fire detection publicly available poses a problem for the
comparison of approaches. Besides the datasets previously mentioned, there are other datasets employed
in related works that are available open-source, such as the examples from the literature presented in
Table 9.1.

Table 9.1: Other open-source datasets used in the literature.
Datasets Source Total Images fire not fire

MIVIA [162] Video 64085 12596 51489
BoWFire [180] Images 226 119 107

Note that video-based sources account for consecutive frames, thus the samples vary less than when
dealing with image-based datasets. This is an important distinction, since training models with very similar
samples can result in overfitting.
These datasets concern fire detection in general therefore were not deemed adequate for this study, since
it is aimed at exploring fire detection in rural environments and identifying possible limitations in these
scenarios.

9.4 Methodology
Transfer Learning (TL) is a deep learningmethod that consists of leveraging a previously optimized network,
a pretrained model, and use it to learn an entirely new task, using a different dataset. Currently, this
technique is extensively used to address tasks where data availability is still scarce [181], enabling novel
applications in other scientific domains such as remote sensing.
Following a transfer learning approach, this work employs the Inception-v3model pretrained on ImageNet,
and retrains the classifier part to perform single-image classification under a supervised learning scheme.
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9.4.1 Classification problem

The task of fire detection is formulated as a binary classification problem alike preceding works [148, 159,
160]. The images will be classified individually into one of two classes: fire or not fire. As a starting point,
wewill set the threshold value for the prediction scores at 0.5. Further along, after performance evaluation,
we will reassess this value by comparing it with the optimum threshold obtained from the ROC curve.
Before delving into the details of our dataset, we present the criterion adopted to establish the ground
truth of each image. Using visible range sensors, a fire event can be identified by spotting a fire flame, a
smoke curtain or both. At this stage, the criterion for fire detection only includes situations in which a fire
flame is visible in plain sight. Let the definition of the classes be defined as follows:

fire (positives): flame is visible in the image; and
not fire (negatives): flame is not visible in the image.

Fig. 9.7 exemplifies instances of each class.

(a) fire (b) fire (c) not fire (d) not fire
Figure 9.7: Samples of positives and negatives for both classes.

The selection of this criterion was influenced by three factors. On the one hand, previous approaches to
fire detection using CNNs also focus on flame detection [148, 159, 160]. This happens because algorithms
that rely on smoke detection usually present other issues such as an elevated false alarm rate. While in
some situations, detecting a fire event through the detection of smoke could provide an earlier detection,
conversely the potential for false alarms could make the classifier unreliable in a real context. A third
factor concerns data limitations, since classifying images with only smoke as positives would lead to a
unbalanced database.

9.4.2 Data augmentation

The need to remove the logo in every image of the firefighter’s database, paired with the objective of
having a larger and balanced training dataset, motivated the application of a data augmentation process.
The main steps of the algorithm are summarized in Fig. 9.8, as well as an illustrative example of the pre-
processing schema. After first removing the borders of the images, the image logo is located with an
algorithm based on color segmentation and feature descriptors. To reduce the number of features, a color
segmentation algorithm targets the red color of the Bombeiros.pt logo. This process is performed on the
logo image and the original image, narrowing down the search space significantly. Subsequently, features
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are extracted on both segmented images using speeded up robust features (SURF) [182]. The relative
location of the points in the original image that match the features gives the position of the logo.
The images in the database have either landscape or portrait aspect ratio, and the logo is located on one
of the corners, which results in 8 possible cropping configurations. For each image, the position of the
logo is obtained in 3 steps:

1. Assess the type of aspect ratio by comparing image height and width dimensions.
2. Perform red segmentation of the image logo and original image.
3. Match SURF features to extract the logo position in the original image.

Then, the original image is cropped in three configurations to create the same number of new images. The
cropped areas for landscape and portrait aspect ratios are defined in Table 9.2.

Table 9.2: Cropping areas height x width (in pixels).
Aspect ratio Red area Yellow area Blue area
Landscape 395x700 465x465 395x395
Portrait 625x470 470x470 395x395

As a final preprocessing step, the new images are rescaled to 299x299 to match the size of the input layer
of Inception-v3.
To illustrate this process, take the example of the augmentation performed on the original image of
Fig. 9.8b. To obtain the first image, the area signaled with the interrupted red line is cropped to create a
new image. Since the aspect ratio is rescaled from a rectangle to a square, this transformation introduces
a new sample with distortion. For the second and third images, the areas are the ones depicted in yellow
and blue respectively. Due to some overlap in the areas of these two images, this will produce a translation
effect in the resulting images. Conversely, since the crops have different areas and will all be reshaped to
299x299, this will also result in changes in scale.
All in all, this augmentation procedure introduces variances in distortion, translation and scale.

remove margins

get logo position 
(SURF features)

crop & resize new images

(a) (b)
Figure 9.8: Preprocessing schema to remove the image logo and to perform data augmentation:a) algorithm; b) example of cropping and resizing to generate three new images of size 299x299.
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9.4.3 Database

The data augmentation technique described previously was applied to the Portuguese Firefighters Portal
Database, creating a larger source of images for training. From this new set, images were selected with
discretion with the overarching objective to ensure variety of the samples. The resulting database has
predominantly images of WUI scenarios captured at varying distances, as well as instances of subclasses
such as firefighters, fire engines and aerial support vehicles, as previously illustrated in Fig. 9.5.
To establish the ground truth, the images were regarded as single instances, irrespective of how they were
obtained. Once again, considering the original image depicted in Fig. 9.8b, the red and yellow images have
the ground truth label fire, whereas the blue has the ground truth label not fire.
Due to the characteristics of the PFPDB database, which has predominantly fire scenarios, the data aug-
mentation process yielded a skewed distribution between classes with a ratio of approximately 65/35 of
fire and not fire images respectively.
However, since the performance measures widely used in the deep learning field are dependent of class
prior probabilities, having a balanced dataset is a factor of critical importance. To even out the number
of samples between classes, additional images were sourced online. Images hand-picked online were
analyzed case-by-case and manually cropped at random to introduce variations in scale, translation and
distortion.
Fig. 9.9, summarizes the process of creating the resulting database, herein referred to as the cross-validation
database (CVDB), which is composed by 3623 fire images and 3551 not fire.

cross-validation database

group of 2 group of 1

original samples

data augmentation

image sources

group of 2

not 
fire

not 
fire

group of 3

not 
fire

group of 3

fire

group of 1

fire

group of 1

not firefire

Figure 9.9: Description of cross-validation database.
Note that, as depicted in Fig. 9.9, the images derived from the same original image are indicated as forming
a group. This is an important consideration for cross-validation as will be described further along. These
groups of images can have 1, 2 or 3 images and can be of three types:

fire: all sub-images with fire ground truth
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not fire: all sub-images have not fire ground truth
mixed: sub-images can have different ground truths

This information will be relevant in the analysis done in Section 9.5.3.

9.4.4 Dataset partition

Typically, the partition algorithms for dividing datasets into folds for cross-validation simply split the data
randomly in approximately equal-sized parts. However, as consequence of the effort to increase the num-
ber of samples in the database, and because each image is treated individually as if it was an independent
observation, it is necessary to ensure that images derived from the same original image are allocated to
the same fold. Otherwise, similar samples such as the red and yellow images from Fig. 9.8b could end up
on the training and testing subsets respectively, thus undermining completely the validity of the results.
To overcome this issue, the partition algorithm devised, illustrated in Fig. 9.10, starts by grouping images
derived from the same original image that share the same class. The folds are created sequentially and
separately for each class with a 50/50 class distribution. Then groups of images from the fire class are
assigned into equal-sized folds. Before allocating a group of images from the not fire list to a certain fold,
the existing folds are searched for the existence of a group from the same original of the fire class. If a
match is found, the not fire group is directly assigned into the correct fold, otherwise it can be added to
the current fold being created. This procedure ensures a balanced class distribution in every fold and that
images derived from the same original image are not in the training and testing sets simultaneously.

fire
fire

not fire

1. group images 
per class

2. allocate images of the 
fire class to a fold

3. allocate group to the fold with
images from the same original image

fold 3

fold 1

fold 4

fold k

validation fold

fold 2

…

Figure 9.10: Description of procedure to partition data for k-fold cross-validation.
This partition algorithm was used to create 10 folds for cross-validation (6000 images), plus an extra fold
of 600 images to be used as the validation set for hyperparameter selection.

9.4.5 Hyperparameter selection

For hyperparameter selection, 21 values of learning rates were tested between 0.001 and 0.1. For each,
training batch size was changed between 100 and 200, but it did not yield benefits in classification per-
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formance, hence the batch size was fixed at 100 to speed up training. From the results of these iterations
the learning rate was fixed at 0.05 and the number of epochs at 10, so as not to overfit the models. The
models were trained using the stochastic gradient descent (SGD) optimizer.

9.5 Results and discussion
The following sections present the results of retraining Inception-v3 with the cross-validation database,
and the best model obtained is evaluated with the Corsican Fire Database (CFDB). Subsequently, an in-
depth analysis is presented of the limitations associated with the application of this transfer learning ap-
proach, with a comprehensive analysis of the misclassifications and its possible causes.

9.5.1 K-fold cross-validation

The dataset used for cross-validation employs 10 folds of 600 images each (CV dataset), evenly split
between classes, randomly sampled from the cross-validation database. The Inception-v3model is trained
using the data in K − 1 folds and the data in 1 fold is hold out for testing. The Inception-v3 model was
retrained 10 times for each training set yielding a total of 100 models. The classifier is evaluated by
averaging the results of the performancemeasures of all themodels, which are presented in Table 9.3, with
the mean and standard deviation of each performance measure. Table 9.3 also presents the performance
for the best model tested on the CFDB.

Table 9.3: Model performance evaluation.
Dataset Accuracy(%) Precision(%) Sensitivity(%) Specificity(%)
CV dataset 93.60±1.57 94.12±2.45 93.13±3.28 94.07±2.78
CFDB* 98.6 100 98.6 -
*for the best model only

Overall, based on these performance metrics, it is possible to infer that the model is able to generalize
well for unseen data, considering the results achieved for both datasets. Nevertheless, while achieving
best accuracy performance is important, when possible, it is also desirable to minimize the rate of false
alarms (maximize specificity). Therefore we will use the ROC curve to assess if a better trade-off between
hit rates and false alarms could be achieved.
Observing the ROC curves for a fixed threshold at 0.5 and variable threshold, depicted in Fig. 9.11, it
becomes evident that the dominating curve is for variable threshold with a greater area under the curve
(AUC). Notwithstanding, by calculating the best trade-off between hit rates and false alarms, represented
by the optimum point in the curve, the value of the threshold for this point is 0.5099. The minute dif-
ference between threshold values does not suggest a significant improvement in performance, which is
confirmed by the results presented in Table 9.4.
Considering an accuracy mean error rate of 6.4% corresponds to an average of 40 images misclassified in
600, it still warrants further investigation to understand its possible causes.
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Figure 9.11: Comparison of threshold values using ROC curves.
Table 9.4: Comparison of performance with different threshold values for the CV dataset.

Threshold Accuracy(%) Precision (%) Sensitivity(%) Specificity(%)
0.5000 93.60±1.57 94.12±2.45 93.13±3.28 94.07±2.78
0.5099 93.60±1.57 94.30±2.39 92.92±3.32 94.28±2.67

9.5.2 Performance analysis

On the one hand, scalar performance measures give a tangible metric for ranking classifiers, but are too
opaque to give insight about the fitness of the model. On the other hand, ROC curves address the same
ranking objective by considering the prediction scores instead of the final binary classification, enabling
a better fine-tuning of model classifications by varying the decision threshold to attain the desired bal-
ance between hits and false alarms. Notwithstanding, to understand the fitness of our classifier we delve
beyond these methods.
Taking a step back, we start by analyzing the prediction scores of themodel and check how far off those are
relative to the ground truth labels. For that purpose, we designed a transparent confusion matrix, which
can be observed in Fig. 9.12. To follow the structure of a confusion matrix, images were sorted by class,
with the positive class, in our case fire, in the first column. To facilitate discerning the separate classes,
images of the fire class are depicted in red and from not fire class in green. The symbols representing the
hits or misses are indicated in the legend.
Despite the expected variations of performance of each fold, we study fold 10 to exemplify the reason-
ing of the analysis. Observing Fig. 9.12, most of the images are predicted with a high confidence level.
However, focusing on the area of the threshold value at 0.5, there are several borderline instances, where
some are on average well classified and others not.
Due to the variance between iterations, it matters to quantify deviations, but a box plot visualization
would be difficult to inspect for 600 instances at a time. For this reason, we opted for a histogram with
the number of repetitions each image is misclassified, displayed in Fig. 9.13. For ease of visualization,
errors that occurred in more than 5 of the iterations are illustrated in red, whereas more seldom errors are
depicted in green.
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Figure 9.12: Transparent confusion matrix depicting the mean fire prediction scores for fold 10.

50 100 150 200 250 300 350 400 450 500 550 600

2

4

6

8

10

Image Index

Rep
etit

ion
s

Figure 9.13: Histogram of misclassifications for fold 10 (10 iterations).

Attending to the results illustrated in Fig. 9.13, the images where the network exhibits difficulties in clas-
sification are usually the same across iterations. Then if most of the misclassifications are recurrent, it
matters to understand if there are limitations associated with these errors inherent to the model or to the
data.
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9.5.3 Classification analysis

With a 93.6% classification accuracy, themodel generalization is high, even so considering thewide variety
of situations encompassed by the database, which has a total of 6000 images from different fire events.
The following sections present examples of real scenarios that demonstrate the fitness of the classifier
and its limitations, covering with special attention both false negative and false positive misclassifications.
The focus of the analysis lies on groups of 3 images for two reasons: it is themost represented arrangement
in our database, and more data provides greater insight, than comparing isolated instances. The samples
presented throughout Section 9.5.3 juxtapose the ground truth of each image, with the values of themean
and standard deviation of the fire prediction scores.

Successful fire classification

This section highlights examples of correct classifications of groups of three images with mixed classes,
which were derived from the same original image but have different ground truths, as described previously
in Section 9.4.3.

ground truth: firefire pred.: 0.85±0.06 ground truth: firefire pred.: 0.92±0.03 ground truth: not firefire pred.: 0.17±0.07

ground truth: firefire pred.: 0.90±0.04 ground truth: firefire pred.: 0.83±0.04 ground truth: not firefire pred.: 0.19±0.07

ground truth: firefire pred.: 0.92±0.02 ground truth: firefire pred.: 1.00±0.00 ground truth: not firefire pred.: 0.29±0.07
Figure 9.14: Successful classifications of fire (left and center) and not fire(right).

As can be observed in Fig. 9.14, considering a threshold value of 0.5, it is possible to attest that fire is
correctly classified in different scene contexts, including in the presence of elements such has firefighters
or firetrucks. These examples represent appreciable difficulty because the augmented images are very
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similar between them but have opposite ground truths. The prediction scores demonstrate the network
was able to learn fire patterns and generalize well in these conditions.

False negatives

For a fire detection classifier, false negatives should be kept to a minimum, and therefore the analysis of
these cases can bring to light the limitations of the model as well as of the training itself. In this section
we analyze a series of examples, to bring attention to some patterns that were identified.
By analyzing the batch of false negatives, two causes for the misclassification can be suggested: reduced
spatial scale and spatial location.

Reduced spatial scale

The pixel scale at which fire can be detected by the network is a factor of paramount importance. In the
examples in Fig. 9.15, in which the fire is captured at long distances, most of the images were misclassified,
or were close to the decision threshold. Nevertheless, considering that other images in the database with
similar conditions were correctly classified, further tests would need to be done to assess the degree to
which variance in scale affects classification performance.

ground truth: firefire pred.: 0.25±0.04 ground truth: firefire pred.: 0.39±0.05 ground truth: firefire pred.: 0.07±0.02

ground truth: firefire pred.: 0.21±0.05 ground truth: firefire pred.: 0.51±0.07 ground truth: firefire pred.: 0.58±0.09
Figure 9.15: False negative classification associated with reduced spatial scale.

In the future, evaluating the smallest pixel area that can be detected by this type of models plays a crucial
role in determining the altitude of operation of monitoring systems.

Pattern spatial location

Comparing the images in Fig. 9.16 it is noticeable that images with fire patterns around the borders are
misclassified in opposition to their counterparts, which are correctly classified with a high degree of con-
fidence. This type of misclassifications occur for the images on the right of the top two rows, and the one
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at the center of the bottom row.

ground truth: firefire pred.: 0.87±0.03 ground truth: firefire pred.: 0.99±0.00 ground truth: firefire pred.: 0.13±0.04

ground truth: firefire pred.: 0.81±0.08 ground truth: firefire pred.: 0.94±0.04 ground truth: firefire pred.: 0.30±0.11

ground truth: firefire pred.: 0.96±0.01 ground truth: firefire pred.: 0.17±0.05 ground truth: firefire pred.: 1.00±0.00
Figure 9.16: Examples of false negative classification associated with fire pattern spatial location on theimage borders.

Despite the fact that CNN models acquire translation invariance through their parameter sharing scheme
(Fig. 9.3), the incorrect outputs indicate themodel is not learning this capability after all. However, keeping
in mind neural networks are not able to generalize for situations for which they were not trained, the
reason for failure in this scenarios could be lack of representativity of similar situations in the training
data.
To ascertain if this was the case for our database, we computed the standard deviation across the RGB
color channels. Since fire is characterized by having high values in the red channel and lower values in the
blue and green, the standard deviation between these variables gives a straightforward way to measure
the pattern distribution.
Following this reasoning, we computed the cross-channel variance for the false negatives which met this
misclassification category. Fig 9.17 displays the comparison between the distribution for the false nega-
tives and thewhole training set. The fact that fire patterns are less present around the borders in Fig. 9.17b
confirms our hypothesis. To minimize this limitation, functions responsible for partitioning the data for
cross-validation should incorporate this measure to ensure a better distribution.
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Figure 9.17: Comparison of cross-channel variance.

False positives

The rate of false alarms is an important concern for fire detection problem, because it weights heavily on
the reliability of the classifier, and its applicability in real scenarios.
In a general sense most of the false positives could be attributed to two different situations described in
the sequence.

Sunset

Sunset contexts, where there is a pattern of high intensity in the images, often cause classification errors.
Note that all the images in Fig. 9.18 should have a fire prediction score below 0.5, but for the first two
images the presence of the sun leads to errors in classification.

ground truth: not firefire pred.: 0.97±0.01 ground truth: not firefire pred.: 0.96±0.02 ground truth: not firefire pred.: 0.11±0.04
Figure 9.18: Example of false positives due to sunset (left and center).

Since CNNs only acquire color invariance through the training data, the retraining approach might be
constrained to this caveat as a consequence of the previous optimization procedure. Despite having 106
images of sunsets in our dataset, the retraining of the last layer was not enough for the network to learn
to classify correctly this type of instances. A solution that can be explored is to fully train the network if
more data is available, and expose the model to more samples of sunset settings.

146



Smoke curtain

In the formulation of the classification problem, the ground truth established considered an image as
belonging to the fire class only if a flame is visible in plain sight. However, the presence of a smoke curtain
in the images revealed to be a common cause of false positives, as can be observed in Fig. 9.19.

ground truth: not firefire pred.: 0.63±0.09 ground truth: not firefire pred.: 0.03±0.01 ground truth: not firefire pred.: 0.14±0.04

ground truth: not firefire pred.: 0.67±0.09 ground truth: not firefire pred.: 0.76±0.08 ground truth: not firefire pred.: 0.69±0.08
Figure 9.19: Examples of false positives associated with the presence of smoke.

This effect was to be expected because when the network learns high-level features of the fire class it
associates, to some extent, the patterns of fire and smoke.

Overall performance

Although the classification approach followed was based on single image classification, in the previous
section it was identified that frequently in a group of images derived from the same original image, not all
images were misclassified.
Therefore, since we have many instances of groups with 3 images, it may be beneficial to approach clas-
sification as a group instead of individual instances. To assess the performance of the model in terms of
the original images, we quantified the number of misclassifications per original image, as can be observed
in Fig. 9.20.
Considering there are groups with 3 images that have only one misclassification, the results could be
further improved if the algorithm considered the group has a whole and not as independent samples. This
indicates that while the variances to distortion, scale and translation provide benefits in generalization, for
the final classification the performance would improve if evaluated considering the ground truth of the
original data.
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Figure 9.20: Overall misclassifications sorted by original image.

9.6 Conclusion
The proposed approach allows leveraging existing resources while extending the current knowledge and
understanding of the limitations of deep learning approaches in wildfire detection applications. Further-
more, the framework proposed for data augmentation coupled with cross-validation translates to other
domains of application in expert and intelligent systems where image data is scarce.
Since large-scale datasets for this type of real-world challenges still do not exist, and the open-source
ones are still limited in size, it is difficult to fully and correctly train a deep architecture, reason for which
we opted for a transfer learning approach akin to other works in the literature. The databases used in
this study are evolving databases which are publicly available, namely the Portuguese Firefighters Portal
Database and the Corsican Fire Database. The former was used has to create a cross-validation dataset
and provides a plethora of images from real fire events in rural environments. The Corsican Fire Database
was used solely for testing, enabling the evaluation of the generalization of the best model obtained.
To handle the data limitations, we performed data augmentation and evaluated the model using tenfold
cross-validation. The classification problem formulated has two possible outputs, fire and not fire, and the
criteria used to establish the ground truth was based on flame detection in the images not specifically a
fire event. By retraining the Inception-v3 on a challenging and diverse dataset it was possible to achieve a
93.6% accuracy, which is a promising result regarding generalization, given the complexity of the classifi-
cation problem. Moreover, the best performingmodel was tested on the Corsican Fire Database achieving
accuracy of 98.6% for fire situations.
Based on the results demonstrated, the proposed approach of combining transfer learning approach cou-
pledwith data augmentation and tested using tenfold cross-validation has fourmain advantages: (1) model
retraining results in decreased computational load, thus enabling the use of cross-validation to leverage
small datasets; (2) data augmentation introducing variation in scale, translation and distortion improves
the robustness of the model, while allowing the identification of model limitations; (3) implementation
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of k-fold cross-validation on augmented data increases size of the dataset, hence enabling testing the
approach in a representative set of data rather than a single split where only part of the data would be
tested; (4) using image data provides higher variability between samples than video-based images taken
from high frame rate sources.
From the thorough analysis of the misclassifications, four patterns emerged as the main causes of error.
Reduced spatial scale of the flame as well as the spatial location of the fire patterns originated false neg-
ative situations, whereas sunset scenarios and smoke curtains were a common cause of false positives.
Further research is required to improve the classification of images with these characteristics, as well as
to extend the fire classification to situations with smoke, both being crucial for application of thesemodels
in real scenarios.
The difficulty of wildfire detection at reduced spatial scalesmay be inherited from the deep neural network
architecture, thus evaluating the smallest pixel area that can be detected by this type of models will be
fundamental for determining the altitude of operation of monitoring systems. Moreover, based on the
insights gained concerning the spatial location samples, the functions responsible for partitioning the data
for cross-validation should incorporate a cross-channel variance measure introduced to ensure a better
spatial distribution in the training datasets. Furthermore, sunset or smoke misclassifications are to be
expected due to limitations in the training dataset. To address this issue, the evolution of current datasets
should aim at improving the variety of situations included. As noticed in the experiments, the fire class
already associates, to some extent, the patterns of fire and smoke, thus a multi-class formulation could
benefit the classification performance. While the variances to distortion, scale and translation provide
benefits in generalization in training, for the final classification the performancewould improve if evaluated
considering the ground truth of the original data. In practice, the image classification pipelinemay produce
more reliable results considering a set of consecutive frames within a time-window.
In light of the insights revealed, this study opens new avenues of future research that should be considered
towards improving model generalization while working with the evolving datasets. First, a possible exten-
sion of this workmay include developing algorithms to balance dataset partitions for cross-validation using
sub-classes, e.g., smoke, sunset, mountain range, firefighting vehicles. Second, data augmentation proce-
dures could extend the current approach by improving the representativeness of the spatial distribution
of the fire instances, based on the cross-channel variance measure introduced. Third, towards real-world
application, the problem formulation could be extended to encompass multiple classes, namely both fire
and smoke instances.
Finally, the effort to build benchmark datasets not only limited to visual range data, but also encompass-
ing multimodal data, is a continuing and evolving activity in the community of wildfire research. With
the emergence of new databases current approaches in intelligent systems can also aim to include exten-
sions to explore spatiotemporal dependencies, as well as develop hybrid learning systems that leverage
multimodal data for improved generalization and reliability in real scenarios.
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10.1 Introduction
Fire outbreaks can have devastating consequences both on social and economic levels, leading to ex-
tensive material damages, and in extreme situations to the loss of lives [183]. While in urban settings
regulations establish that buildings must follow mandatory fire safety measures and protocols [184], in
temporary settlements like campsites these rules are not so demanding.
Temporary campsites, associated with recreational activities as camping, outdoor festivals, or pilgrimage
activities, present high fire hazard. The combination of combustion inducing equipment and highly com-
bustible paraphernalia associated with camping activity, can lead to fire incidents [185]. These events
present a considerable danger for public safety and often require the evacuation of thousands of people.
In addition, these places are commonly situated in the wildland-urban-interface, which can expose the
participants to wildfires that spur from outside the venue premises [186, 187].
In turn, due to ongoing conflicts, violence and persecution, by the end of 2017 there were over 68 million
forcibly displaced people worldwide [188]. The migration crisis leads to overcrowding in refugee camps
and shelters, which results in poor and unsafe living conditions. In these settlements, individuals are
also at risk, as a result of inadequate fire safety conditions and the difficulty of implementing strict fire
prevention guidelines [189]. Moreover, the human presence acts as another source of potential fire causes
either by negligence or risk behaviors. These factors increase fire risk and make campsites a hotbed for
the occurrence and rapid propagation of fires [190, 191].
For these reasons, there is an urgent need of alternative fire prevention systems that can mitigate the
consequences of fire outbreaks in this type of environments.
In that sense, the advances in computer vision and computational intelligence open opportunities for
the development of intelligent systems that can provide early fire warnings without requiring permanent
human monitoring.
Regarding sensor-based fire detection, the type of sensors employed depends considerably on the char-
acteristics of the application. Whereas indoor solutions make wide use of smoke and gas sensors [192],
outdoors the use of image surveillance systems is predominant [17, 193]. In that concern, in light of the
recent advances in sensor technology, thermal cameras have nowmore competitive costs and are increas-
ingly being applied in industrial applications [194–196]. Moreover, with an expanding range of low-weight
models available in the market, which can easily be installed onboard aerial platforms, applications to de-
tection of wildfires are also a hot field of interest [197].
In this context, this investigation centers on the development of solutions for the early detection of fire
events towards the mitigation of the consequences of these incidents, both on socio-economic and envi-
ronmental levels.
To that end, this work focuses on analyzing nonradiometric thermal imaging data (RGB encoded images)
for detection of fire incidents in an initial stage. The principal objective centers on the development of
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an expert system that can explore the advantages of thermal imaging sensors, aimed at the application in
dynamic environments e.g. campsites.
The proposed solution may be used as a decision support system for surveillance teams of campsites or
other delimited locations, providing automatic alerts of identified high-risk situations.

10.1.1 Related Work

Vision-based fire detection has been an extensively researched topic, with approaches that explore visible
as well as thermal range images [94]. The type of sensory data is a major driver in the selection of the
methodologies to use, and depends widely on the scope of application desired. From literature review, the
main research paths taken to address fire detection focus on two objectives: detection of flames and/or
smoke. The following aims to briefly lay out the main methodologies studied in previous works.
In the computer vision domain, contributions propose a wide variety of color-based models [193, 198–
200], which are frequently complemented by motion [201], or temporal features [202].
However, while many approaches based on classical computer vision algorithms report high success rates,
these lack the generalization to be successfully applied to broader contexts. This represents an important
problem for the development of automatic fire detection systems that can be reliable for application in
real-world scenarios.
To address this issue, intelligent systems methods are increasingly used to complement computer vision
techniques [94]. The solutions proposed encompassing the use of expert systems include neural networks
[148, 203], fuzzy clustering [204], optimization algorithms [205], and support vector machines [204, 206].
Conversely, in an attempt to obtain better model generalization, recent works tend to rely solely on artifi-
cial intelligence techniques such as deep neural networks [148, 203]. Although being promising, this class
of models requires considerable amounts of data to be effective, which is still a difficulty when following
this methodology.
Regarding uses of thermal infrared images, there have been some research efforts [98, 99, 207], but the ac-
quisition cost of thermal imaging systems has been a roadblock for the widespread use of this technology.
Nonetheless, today, the decrease in cost coupled with the versatility of new thermal cameras available in
the market, can make this technology an emerging trend in the near future [197].
Previous contributions focus mainly on wildfire detection systems and report a significant rate of false
positives, due to variations in light conditions (e.g. sunlight, reflections), the detection of objects at high
temperatures, or the false alarms caused by weather conditions [103].
Furthermore, since fire is a source of extreme temperatures, thermal imaging sensors are a natural choice
for a fire detection application. Considering that thermal cameras have sensing capabilities that cover
part of the infrared band, this type of sensory data can offer great advantages for an earlier detection.
Nevertheless, devising a robust computer vision algorithm for this type of data is not straightforward,
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because the color of the images captured by these sensors vary with the relative temperatures between
objects in a scene. This fact introduces high variability in the data, because colors depicting an object vary
over time, depending on the scene context.

10.1.2 Proposed Approach

Considering that the variety of thermal cameras available in the market can have different capabilities,
with radiometric models that provide temperature measurements, and nonradiometric models, which do
not provide temperature measurements, it is important to develop general algorithms that can work with
a wide range of thermal imaging sensors.
Independently of its radiometric capabilities, the user may have access to the sensor raw data or simply to
RGB encoded images (according to the color palette chosen), depending on the camera operation mode.
For real-time applications, like fire detection or surveillance, in most cases it is only this RGB encoded
image output (with or without a temperature-color scale) that is available.
In this way, this study focuses on the development of a classificationmodel based on RGB encoded images
captured with thermal cameras for early fire detection at highly dynamic environments like campsites.
With that objective in mind, a series of experiments were conducted under controlled fire conditions in a
laboratory setting, as well as in the real world context of a campsite during a summer festival.
The data acquired are presented in detail, and a feature engineering process is devised for the analysis of
the response of thermal imaging sensors to a fire ignition and the subsequent development of a classifica-
tion algorithm. Since fire detection algorithms are frequently prone to false alarms, to deal with the high
inner-class variability in the data, an intelligent systems approach is followed.
This paper proposes a fuzzymodeling approach based on features constructed from thermal images, which
is transparent to interpretation and enables the assessment of how the sensor response influences image
variability and its effects in the performance of the classification algorithm for fire detection. Figure 10.1
presents a high-level schema of the proposed approach. By relying on qualitative information only, the
proposed approach is suited to be applied to both radiometric and nonradiometric image systems.

fireFeature
Engineering not fire

Fuzzy 
Modeling

Figure 10.1: Schema of the proposed approach.

This paper is organized as follows: Section 10.2 presents the experiments and data acquired. Section 10.3
introduces a feature engineering process using a color-based approach. Section 10.4 presents the fuzzy
inference system used for modeling the sensor behavior, as well as the performance measures employed
for model evaluation. In section 10.4.6 the results are analyzed and discussed, and section 10.5 presents
the conclusions and suggestions of future work.
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10.2 Experiments and Data Acquisition
This section presents the experiments conducted for data acquisition purposes, which includes controlled
fire experiments performed in a laboratorial setting, as well as field trials in a real context, namely at
the venue of a summer music festival. The experiments conducted in laboratory cover three distinct
scenarios of fire risk situations in camping parks. These situations encompass burning of forest fuels like
straw, but also include combustible materials characteristic of the camping context. In this section, the
environments and setups of each experiment are described in detail, covering the hardware used for each
test and the conditions of image capture. Subsequently, the results from data acquisition are presented,
with the characterization of the datasets used in this work.
In the following, before delving into the description of the experiments, some preliminary information
about thermal imaging systems is required for the understanding of the full reach of the proposed ap-
proach.

10.2.1 Thermal Cameras

Although thermal cameras can have very distinct sensory capabilities, these imaging systems can be cat-
egorized into two classes: radiometric or nonradiometric. This denomination concerns a characteristic
that is intrinsic to each camera model, and refers to its ability to measure thermal radiation, and based
on its calibration parameters convert these measurements to temperature values. Figure 10.2 illustrates
the difference between thermal radiometric cameras and nonradiometric, regarding the data each type of
system can provide.

Raw Data RGB ImageNonradiometric Camera
RGB Encoding

Raw Data
Tmax

Tmin

Radiometric Camera
RGB Encoding

RGB Image

Figure 10.2: Thermal radiometric and nonradiometric cameras.
Note only radiometric cameras provide the temperature scale corresponding to the color values of each
pixel. Hence, when thermal imaging systems are not empowered with radiometry capabilities, that repre-
sents a significant limitation, because the image data is deprived of quantitative information.
Having direct access to an absolute temperature measurement could give clear information to detect a
fire ignition, for example. However, not all cameras possess this capability, but all of these, radiometric or
not, provide RGB encoded images in real-time.
The RGB encoded images outputted by the cameras are the result of internal proprietary operations undis-
closed by the manufacturer. The colors in the output images accessible to the camera end-user change
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depending on the relative temperatures of the scene captured. For nonradiometric camera models the
relation between pixel color and temperature is not provided by the manufacturer. For this reason, an
image-based solution is necessary for application in real scenarios.
In that sense, this work focuses on developing an intelligent system based on features constructed from
RGB encoded images, meaning the aim is to be able to handle thermal imaging data independently of
the radiometric capabilities of the camera or lack thereof. By relying only on qualitative information, the
proposed approach is suited to be applied in both radiometric and nonradiometric image systems.

10.2.2 Controlled Fire Experiments

Tests concerning fire risk situations that can be encountered on campsites were carried out in indoor
laboratory conditions. Using a controlled environment in these experiments allowed for the acquisition of
RGB encoded video from static and moving platforms, as well as from different types of thermal cameras,
namely FLIR SC660 and FLIR Vue Pro. The main specifications of these two cameras are summarized in
Table 10.1.

Table 10.1: Summary of the specifications of the thermal cameras.
FLIR SC660 FLIR Vue Pro

Size [L x W x H] (mm) 299 x 144 x 147 63 x 44.4 x 44.4
Weight (g) 1800 92.1 - 113.4
Sensor Resolution (px) 640 x 480 336 x 256
Focal Length (mm) 19 9.0
Horizontal FOV (o) 45 35
Vertical FOV (o) 34 27
Spectral Band (µm) 7.5 - 13.5 7.5 - 13.5

In what concerns the spatial resolution and the camera field of view (FOV), note that these cameras have
distinct characteristics, thus this will influence the data recorded. Additionally, considering the acquisition
of image from a drone, and having in mind the payload budget of these aerial platforms, comparing the
weight and size of both cameras, only FLIR Vue Pro has suitable weight and size to be taken onboard a
multirotor drone.
Two tests were performed to capture images of straw burning, and to evaluate the response time of the
thermal cameras when the fire source is in direct view. For these tests a straw load of 0.6kg.m-2 was
used, promoting an average flame height of 30cm. In the first test, both cameras were placed on the static
platform. To evaluate the implications of using a moving aerial platform, in the second test, a multirotor
was equipped with the FLIR Vue Pro, and short duration flights were performed to record fire ignitions
and initial spread. Figure 10.3 depicts this experimental setup, with the drone on the top of the image,
and the static platform on the right.
For the situations of controlled fire in the laboratory tests, the data recorded using FLIR SC660 from
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Figure 10.3: Experimental setup with a drone and static platform.
the static platform were used as ground truth, due to its radiometric capabilities. This is a reasonable
assumption to make, since the basis of this study does not rely on temperature measurements but on
image color variations inherent to temperature variations.
The third experimental setup concerns the burning of a camping tent, as depicted in fig. 10.4. For this test,
both thermal cameras were placed on the elevated platform, in static conditions.

Figure 10.4: Experimental setup for the burning of a tent.
This test enables the study of fire detection when the fire source is not in plain sight. In this type of
situation, it is to be expected that the use of thermal infrared sensing will bring advantages relative to
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visible range solutions, by providing an earlier detection.
Note that, in these tests, the average ambient temperature was around 20oC and fuel moisture content
was 13%. It will be expected that in a fire situation, with more severe conditions, as is typical in the
months of higher fire risk, the fire spread will be faster (> ISI - initial spread index of the Canadian Forest
Fire Weather Index).
The complete list of tests performed is summarized in Table 10.2, which includes the controlled fire ex-
periments described in this section, as well as the tests performed during a summer festival that will be
presented in the following.

Table 10.2: Summary of the experimental tests.
ID Description FLIR Conditions Total Frames FLIR Conditions Total Frames

SC660 (Platform) not fire fire Vue Pro (Platform) not fire fire

test 1 straw burning ✓ static (platform) 302 1698 ✓ static (platform) 302 1698
test 2 straw burning ✓ static (platform) 83 1917 ✓ moving (drone) 82 1918
test 3 tent burning ✓ static (platform) 159 1841 ✓ static (platform) 159 1841
test 4 summer festival - - - - ✓ moving (balloon) 1274 42

10.2.3 Field Trials during a Summer Festival

Since campsites are highly dynamic environments, it is crucial to evaluate the thermal sensory data under
real operation conditions, so as to be aware of potential false alarms at the initial stage of the algorithm
design process.
To that end, field trials were conducted during an outdoor festival midsummer, when conditions of igni-
tion propensity were high due to dry weather, strong winds and high temperatures. During the days of
these trials were registered the minimum humidity of 17%, the maximum wind speed of 21 km/h and
temperatures of up to 36oC.
As can be observed in Figure 10.5, the natural surroundings coupled with the abundance of combustible
material raise fire safety concerns.
For these tests, data were recorded with resource to a tethered balloon at a significantly higher altitude
than the previous examples, as illustrated in Figure 10.6.
The data acquisition was performed at different locations of the venue, for periods up to 2 hours, to
test experimental conditions covering areas with different characteristics, allowing the collection of a
comprehensive and diverse dataset. From these tests, four distinct image sequences were used, in specific
two sets of trials for model development, and another two sets of trials for model validation.

10.2.4 Image Dataset

Thermal imaging sensors typically record monochromatic images using a single-channel, which are subse-
quently encoded in pseudocolor to highlight differences in temperature. For this work, the GrayRed color
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Figure 10.5: Partial view of the camping area at the case study summer festival.

Figure 10.6: Balloon setup.

palette was selected from the list provided by FLIR in the camera firmware, which helps to draw attention
to the hottest objects in a scene, by applying high-contrast color values with a divergent color scheme.
While a priori it is unclear if employing this color palette specifically will yield any benefit in classification
performance, FLIR preset filters will be used as it facilitates the development of future work, providing
a basis for comparison of results. For the same reason, this color palette was applied to the raw data
acquired with FLIR SC660, using FLIR ResearchIR software.
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Straw Tests

For the controlled ignition of straw, two types of tests were conducted, namely tests 1 and 2. For the first
case, videos were recorded with both thermal cameras from a static elevated platform. Fig. 10.7 depicts
the data captured with these devices.

(a) (b) (c)
Figure 10.7: Images acquired from the static elevated platform with (a) FLIR SC660, (b) FLIRVue Pro and (c) visible range camera coupled to FLIR Vue Pro

For the second test concerning the burning of straw (test 2 in Table 10.2), image acquisitionwas performed
from a moving platform using a small unmanned aerial vehicle (UAV). As presented before in figure 10.3,
one camera was onboard the multirotor, while the other was positioned on a static elevated platform.
Fig. 10.8 illustrates the data from the different points of view.

(a) (b) (c)
Figure 10.8: Perspectives with 3 different cameras: (a) FLIR SC660, (b) FLIR Vue Pro and (c) vis-ible range camera coupled to FLIR Vue Pro

Both cases presented so far comprise the same type of test, and data were recorded with both cameras,
with the only difference being the point of view for the second case. These instances account for situations
where the fire is visible to the naked-eye, hence could, in theory, be detected using visible range cameras
also. Notwithstanding, one of the main advantages of using thermal imaging is the ability to see beyond
the visible spectrum, thus being capable of detecting sources of thermal radiation to which there is no
direct view. The following example aims to harness this advantage in another set of conditions.

Tent Test

In a camping environment, fires can originate from inside tents which means it is important to study these
cases due to their elevated propagation potential. An important aspect of this type of instances is that
the fire sources are obstructed by a somewhat opaque material. To evaluate this situation, a test was
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performed with both cameras in static conditions on an elevated platform, as illustrated previously in
fig. 10.4. Fig. 10.9 illustrates the differences of data recorded with these devices.

(a) (b) (c)
Figure 10.9: Image data from the burning of camping tent with: (a) FLIR SC660, (b) FLIR VuePro and (c) visible range camera.

Comparing with the previous tests, now, at an early stage, the area in red does not depict the actual fire,
but the heat built-up inside the tent. Whereas this is visible in Figs. 10.9a and 10.9b, for the visible range
image (Fig. 10.9c) the fire will only be observable when it starts consuming the exterior of the tent.

Summer Festival Test

For the dataset acquired in the field tests, the images were captured with a 5 second time lapse from a
helium balloon, as explained previously. Being this an unactuated aerial platform, the field of view of the
camera varies considerably with the effect of the wind. In addition, since the image sequences are taken
from a higher altitude, images in this subset can be of difficult interpretation in some cases. Fig. 10.10
illustrates samples that cover different areas of the venue, and where one can recognize tents, caravans,
roads, people, trees and rocket stoves in a community kitchen area (semi-circle configuration).

Figure 10.10: Heat detection over the camping area captured with the FLIR Vue Pro.
Note that fire was strictly forbidden on the summer festival premises, except for the community kitchen
rocket stoves (depicted in the last image of the bottom row), as well as specific fires lit and controlled by
the organization for scenic purposes.
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As can be observed in the samples, although the strongest source of thermal radiation is depicted in red,
this does not mean it is necessarily fire. Hence, it would be a naive approach to focus only on the detection
of the hottest objects in the scene.
In the following sections, to clear misconceptions of this sort, aspects related to thermal images are ex-
plored in greater depth.

10.3 Thermal Imaging Analysis
Thermal images in pseudocolor are used to highlight differences in temperature, by mapping the intensity
levels according to the color scale of a specified palette. However, this is an adaptive process, in which
the color scale adjusts depending on the temperature of objects in the field of view at a given time.
To assess the advantages and limitations of thermal imaging for a fire detection application, it is important
to have an understanding of how the thermal sensor responds in the event of a fire ignition.
In that sense, this section starts with an example, exploring on a high-level the tent burning case, which
will provide a pathway for the intuitive interpretation of the working of thermal infrared sensors. The
insights gained lead to the reasoning that underlies the feature construction process, which in turn will
enable further analysis.

10.3.1 Tent Burning Example

This example covers the tent burning test presented previously, and aims to characterize the sensor re-
sponse to a fire ignition. The study of this case performed in a controlled environment facilitates the
interpretation, whilst also giving insight to situations where the fire is not directly visible from the start.
To that end, Figure 10.11 depicts the experiment at different moments since the ignition point, and
presents thermal imaging data from FLIR Vue Pro, which are complemented with visible range images,
to provide a better understanding of the scene context.

(a) Ignition (b) 15 seconds (c) 30 seconds (d) 4 minutes
Figure 10.11: Tent burning experiment: color images (top row), FLIR Vue Pro (bottom row).
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By observing the image sequence, it is important to notice that the color scale that depicts the differ-
ences in temperature adjusts with respect to the object in the scene with the maximum temperature. This
adjustment is gradual and can be easily observed in the first three frames, corresponding to the first 30
seconds after the ignition. Whereas, in the first frame the person is represented in red, in the second the
person is increasingly depicted with a dark green. In the third frame, the person in the scene is mostly
represented with grayish tones. This happens because radiation being emitted by the greatest heat source
is measured by the sensor with a much higher intensity than the radiation emitted by the person. While
the temperature of the person remained unaltered, the color scale of the camera suffered an adjustment.
This makes perfect sense, because now the body temperature is much closer to the ambient temperature
than to the temperature of the fire.
In this way, comparing the color spectra of the first and the last frames, it becomes evident that tracking
red objects may not be appropriate for a fire detection algorithm based on thermal images encoded with
this color palette. However, given the alterations observed in the surroundings, the color change suggests
that this type of characteristic can be leveraged to identify the presence of a fire source, for instance by
monitoring the shift between green and gray.
Having understood how the changes in the environment influence the data, it is important to design an
approach well suited for the task of fire detection. Moreover, taking into account high-dimensional data
may be processed onboard in embedded systems, computational complexity is a consideration for the
implementation.
Attending to the complete sequence, as the fire develops, the red area of the image increases, while the
green shades tend to disappear, being replaced by gray tones instead. Noticing this pattern in the image
statistics, we propose a color-based approach to study the dynamic behavior of the sensor. In that sense,
the following section describes the feature construction method devised for that analysis.

10.3.2 Feature Engineering

Feature engineering is an essential aspect of designing intelligent systems and plays a crucial role when
working with high-dimensional data. To handle the computational burden, dimensionality reduction using
feature engineering methods follows two approaches: feature extraction and feature selection. Both
approaches attempt to find the set of variables that maximizes the model performance [208]. The main
difference between the two is that while feature selection involves choosing the most relevant subset of
the available variables, feature extraction consists in applying transformations to construct new features
that contain the most useful information [209].
The field of computer vision deals with high-dimensional data, so extensive research has been devoted to
feature extraction methods, e.g., for edge detection, region segmentation, and detection of points of in-
terest. In this work, to study the behavior of thermal imaging sensors, and its potential for a fire detection
application with expert systems, we will adopt a feature extraction methodology, through color segmen-
tation.
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To devise a color segmentation heuristic, the color palette used in the thermal images should be taken into
consideration. In this section, we describe the GrayRed color palette and lay out the method of feature
construction. This color palette is defined by 120 distinct color values, and depicts a scale of increasing
temperature, from gray to red. As Fig. 10.12 illustrates, the color palette was divided into three segments.

15% 40% 45%

Figure 10.12: Division of the FLIR GrayRed palette into color segmentation classes.
The gray segment includes 18 color levels, which represent 15% of the full scale. The mid-range is defined
by 48 colors of green tones, which correspond to 40% of the scale. The remainder is the red part, that
comprises the last 45% of the color palette, and is defined by 54 color levels. Table 10.3 presents the
RGB thresholds established to define the color segmentation heuristic.

Table 10.3: Segmentation thresholds for feature construction.
classes gray green red
channels R G B R G B R G B
upper limit 253 199 185 143 169 157 255 73 71
lower limit 149 171 160 98 90 86 103 89 85

Although the colors in Table 10.3 are represented in the RGB color space, the segmentation into the three
classes (gray, green, red) will help to convey how the color distribution varies over time. In opposition, if
this analysis was to be done in terms of absolute values of each color channel (red, green, and blue), the
result would be less intuitive and of complex interpretation.
Furthermore, instead of evaluating the color distribution by histogram analysis, the percentage of pixels in
each of the segmentation classes will be monitored. Hence, the features that will describe the adaptation
of the sensor are the percentage of pixels in red, green and gray.
To assess the merits and limitations of thermal imaging for a fire detection application, the color segmen-
tation heuristic will be evaluated for the situations of the experimental tests.

10.3.3 Data Analysis

This section explores the data obtained for the different scenarios. To that end, the results are analyzed
with two distinct approaches. The first addresses how the levels of each segmentation class vary over time,
to clarify the RGB encoding done by the cameras. In turn, the second considers the image as a whole, to
understand the change in image statistics. In the following, the results of all the tests are presented side-
by-side, since it facilitates their interpretation. Yet, by comparing data of images from the two cameras,
the effect of the difference in spatial resolution should be taken into account.
Starting with Figures 10.13a and 10.13b, these correspond to the first straw example (test 1) captured
with FLIR SC660 and FLIR Vue Pro, respectively. Observing Fig. 10.13a it should be noted that there is
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an adjustment in the sensor prior to the ignition. This behavior was caused by the entrance of a person
in the field of view of the camera, and demonstrates the environment and the sensitivity of this type of
sensors have a considerable effect in the data.
Notwithstanding, observing both graphs (Figs. 10.13a and 10.13b), it is evident the ignition provokes
significant changes in the gray and green levels. Considering the ignition occurs around frame 300, it is
also noticeable that the FLIR Vue Pro responds with some delay.
Observing the graphs from Figures 10.13e and 10.13f (tent example, test 3), the change in green and gray
levels happens, once again, in an almost symmetric fashion. But, for this instance, the adaptation of the
color scale to the fire incident takes effect more slowly. The increase in the percentage of red pixels occurs
gradually but still at relatively low levels.
Looking at both of these tests, in which images were captured from a static platform, the variation of the
color levels develops in an incremental manner, so it would be difficult to establish a threshold based on
the change in consecutive frames. Additionally, the percentage of pixels in gray seems the most relevant
feature to identify the occurrence of a fire outbreak. Still, the image does not adjust so abruptly in all
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(b) Vue: Straw burning (static)
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(c) SC660: Straw burning (static)
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(d) Vue: Straw burning (drone)
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(e) SC660: Tent burning (static)
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(f) Vue: Tent burning (static)
Figure 10.13: Color segmentation results, where the ground truth is represented by the black line, and - -depicts the point of ignition.
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cases, so if a low percentage of gray pixels is defined as a threshold, the classification algorithm could be
prone to false alarms.
While the results of the examples analyzed so far were obtained in static conditions, introducing themove-
ment of an aerial platform would cause far greater inconsistency in the color levels. This can be observed
by comparing Figures 10.13c and 10.13d, which depict the second straw example (test 2) captured from
a static platform and a drone, respectively.
In turn, under real operating conditions, this stochastic behavior is confirmed in the tests performed with
the tethered balloon. Figure 10.14 presents a selection of the results from the field trials performed,
depicting a baseline situation as well as a situation of potential fire detection.
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(b) Community kitchen area
Figure 10.14: Partial results from the festival tests with FLIR Vue Pro.

Examining the graphs from Figures 10.14a and 10.14b, relative to the tests at the summer festival with the
tethered balloon, the movement of the camera, as well as the set 5 second time lapse, have a considerable
effect on the sensor response. Now, the variation is no longer incremental, and consecutive frames display
abrupt changes in the percentage of either of the segmented colors.
Overall, the principal insight gained from this analysis is that in response to a fire ignition the gray and
green percentages adjust in a complementary way, as the color scale adjusts to the hottest objects in the
scene. Furthermore, since the ignition starts with a small area in the image, the red percentage is usually
the one with least influence for a fire detection heuristic.
A second approach allows for better intuitions regarding the image statistics. With a different type of
visualization, the emphasis is no longer on how the color levels change relative to each other, but rather
to the overall aspect of the images. Considering a color segmentation heuristic has to encompass in its
thresholds a wide range of scenarios, this enables the overview of percentage ranges for each situation,
as can be observed in Figure 10.15.
Observing the results from the static tests, the threshold for gray pixels could have to be established at
50%. But for the case from Fig. 10.15b and Fig. 10.15d would be misclassified. Lowering the threshold
value to classify these situations correctly could make the algorithm prone to misclassifications.
In addition to the previous tests, the segmentation heuristic was also tested on a dataset acquired at the
summer festival, which is partially presented in Fig. 10.16. Fig. 10.16a illustrates the baseline situation
where the color levels are considerably stochastic, with high red and green color levels, which characterizes
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(b) Vue: Straw burning (static)
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(d) Vue: Straw burning (drone)
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(f) Vue: Tent burning (static)
Figure 10.15: Color segmentation results, where the ground truth is represented by the black line, and - -depicts the point of ignition.

the normal situation. Fig. 10.16b depicts in more detail a period where fire situations are detected.
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(b) Community kitchen area
Figure 10.16: Partial results from the festival tests with FLIR Vue Pro.

To illustrate that the presence of fire can cause abrupt transitions in the color levels in consecutive frames,
a few selected samples are shown in Fig. 10.17.
By inspecting the corresponding sequence of frames presented in Figure 10.17, what stands out is that
the color scale adjusts when the same area enters the FOV of the camera. With knowledge of the venue
premises, it is possible to confirm this place as the community kitchen area with rocket stoves. This is an
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(a) Frame 47 (b) Frame 48 (c) Frame 49

(d) Frame 50 (e) Frame 51 (f) Frame 52
Figure 10.17: Sequence of frames taken over one of the community kitchens with the FLIR Vue Pro.

area where fire detection is to be expected, in addition to other heat sources such as objects at elevated
temperatures.
Regarding the color scale, this example, once again, confirms that when the temperature differences in
the scene increase, the percentage of green in the image reduces considerably. However, considering
this camera was programmed to capture images with a 5 second time-lapse, it is unknown the time the
firmware takes to adjust the color scale. Additionally, taking into account the altitude at which the im-
ages were captured, this result proves that the color scale adapts even when hot objects have low spatial
resolutions.
As has been demonstrated, the variability inherent to dealing with thermal images, which depict relative
temperature differences, is a considerable challenge to the development of a robust classification algo-
rithm.
Although a set of crisp heuristic rules could be fine-tuned to work for the situations presented, that type
of algorithm would have limited generalization. As the tests from the festival illustrated, real conditions
account for much higher variability in image content. Thus, to address this issue we propose an expert
system based on fuzzy inference.

10.4 Fuzzy Modeling
Fuzzy modeling is an important method for modeling complex nonlinear behavior in systems for which
there is no a priori knowledge of the system or its dynamics can not be derived from first-principles. This
type of inference system is based on a rule-base that establishes input-output relations, and allows the
interpretation of the rules when model complexity is simple. For this reason, these models are considered
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transparent to interpretation when compared to black-box models, and are usually known as gray-box
models [210].
The purpose of using a fuzzy modeling approach in this study is two-fold. First, the aim is to investigate
the behavior of the sensor and its response to a fire ignition. To that end, a gray-box approach that
is considered transparent and can be interpreted may provide greater insight to the inner-workings of
thermal cameras than, e.g., black-box models like neural networks. Second, the main objective of this
work is to develop a solution that can be applied in real contexts, where operation conditions increase the
stochastic nature of the data acquired. The changes in the field of view of the camera and variable capture
intervals, can result in a noisy model output, therefore a classification approach should be followed.
This section begins with the formulation of the classification problem to be solved, followed by the de-
scription of the fuzzy modeling methodology employed. Subsequently, the performance measures used
for parameter estimation and model validation are presented.

10.4.1 Classification Problem

The problem of detecting fire outbreaks is formulated as a binary classification problem, where the nega-
tive class is not fire (0) and the positive class is fire (1). Given a set ofN samples, a data vector zk = [xk,yk]
is defined by 3 input variables [x1, x2, x3], the three features (red, green and gray percentages), and the
output, y. The classification threshold applied to the model output is set at 0.5.

10.4.2 Takagi-Sugeno Fuzzy Model

The Takagi-Sugeno (TS) fuzzy model [211] is a rule-based inference system that translates relationships
between inputs and outputs by means of “if-then" rules, in which the fuzzy antecedents are formed by
logical rules, and the consequent part is a crisp mathematical function.
For each input variable xj (j = 1, 2, . . . , n), the input space is divided into fuzzy regions, which define
the antecedent fuzzy sets, Aij , and the consequent functions, fi(x), describe the behaviour of the system
within a given region. Thus, a rule Ri can be expressed as:

Ri: If x1 is Ai1 and x2 is Ai2 ... and xn is Ain

then yi = fi(x), i = 1, 2, ..., C

with C standing for the number of rules. In this work, the fuzzification process follows a data-driven ap-
proach, by means of fuzzy clustering in the product space of the inputs and outputs, where the number of
rules is given by the number of clusters. In this way, the crisp input variables aremapped to the antecedent
fuzzy sets, Aij , represented by membership functions, µAij

(x).
For TS-type 1 models, the consequent part of the rules is given by first-order linear functions of type:

fi(x) = aTi x+ bi, i = 1, 2, . . . , C (10.1)
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where parameters ai and bi are determined by least-squares estimationmethods in the input-output space.
The inference engine evaluates the degree of fulfillment of the antecedent, i.e., the firing strength of each
rule, βi. To implement the logical connectives of the rules, in this case the “and" operator, the product
operator is used:

βi =

n∏
j=1

µAij (x) (10.2)
where µAij

(x) : R 7→ [0, 1] is the membership function of fuzzy set Aij .
In the defuzzification step, the model output, ŷ, derives a nonlinear regression model from a collection of
local linear models, by combining the contribution of each of the rules. This is performed by the center-
of-gravity method, given by the weighted average of its firing strength, βi, with the consequent functions,
fi(x):

ŷ(x) =
∑C

i=1 βifi(x)∑C
i=1 βi

(10.3)

Since this yields a continuous-valued output, for the purpose of a classification task, the crisp values will
be subsequently transformed into classification classes, which in the scope of this work is a binary output.
Having explained the basis of the TSmodel employed, the following describes in further detail the method
of fuzzy clustering used for estimating model parameters, namely the Gustafson-Kessel clustering algo-
rithm [49].

10.4.3 Gustafson-Kessel Fuzzy Clustering

In fuzzy models derived from data, the first step for generating the rule-base is to apply a fuzzy clustering
algorithm to divide a given dataset Z = [z1, z2, . . . , zN ] into fuzzy subsets. In fuzzy partitions each data
point belongs to a cluster according to a degree of membership, µik, which enables coping with data
uncertainty.
In this way, the fuzzy partition matrix, U = [µik], defines the degree of membership for each sample in the
dataset Z, and the cluster centers, vi, are computed as:

vi =
∑N

k=1(µik)
mzk∑N

k=1(µik)m
, i = 1, 2, . . . , C (10.4)

defining the matrix of cluster centers V = [v1, v2, . . . , vC ]. The fuzziness parameter, m ∈ [1,∞), repre-
sents the degree of overlap between clusters, with 1 corresponding to hard partitioning where there is no
uncertainty in the data.
In this work, TS fuzzy models were constructed using the Gustafson-Kessel (GK) clustering algorithm,
which is an extension of the well-known fuzzy c-means (FCM) algorithm [44]. Unlike the FCM, which
imposes one shape for all clusters regardless of their actual nature, the GK algorithm uses an adaptive
distance measure based on the Mahalanobis distance [49]. For each cluster, the distance function used is

170



a squared inner-norm, given by:
d2ikAi

= (zk − vi)TAi(zk − vi) (10.5)
whereAi is a norm-inducing matrix, based on the cluster covariance matrix:

Ai = |Fi|
1
nF−1

i (10.6)
with the fuzzy covariance matrix given by:

Fi =

∑N
k=1(µik)

m(zk − vi)(zk − vi)T∑N
k=1(µik)m

(10.7)

In the GK algorithm, matrices A = (A1, . . . ,AC) are used as optimization variables, thus allowing each
cluster to adapt the distance norm to the local topological structure of the data. Allowing the matrix Ai to
vary with its determinant fixed (10.6) corresponds to optimizing the shape of the cluster, while its volume
remains constant.
The clustering criterion to minimize is defined by the following objective function:

J(Z;U,V,A) =

C∑
i=1

N∑
k=1

(µik)
md2ikAi

(10.8)

At the end of each iteration, the partition matrix U is updated, according to:
µik =

1∑C
j=1

(
dikAi

djkAi

)2/(m−1)
(10.9)

until the cost function improvement is less than a specified tolerance, or themaximumnumber of iterations
is reached. For a formal description of the individual steps of the algorithm refer to [82, 210].
Once U has been determined, the multidimensional fuzzy sets defined point-wise in the rows of the
partition matrix are projected onto the antecedent variables, xj , to obtain the point-wise definition of
fuzzy set Aij .

µAij
(xjk) = projj(µik) (10.10)

Then, the antecedentmembership functions, µAij
(xj), are approximated by parametric functions, allowing

a continuous representation in the domain of the input space.
The estimation of the consequent parameters is usually performed by least-squares (LS) methods [210].
The ordinary least-squares (OLS) method was selected, because it has the benefit of allowing the local
interpretation of the consequent parameters, and yielded accurate results for this classification task.
The OLS algorithm estimates the consequent parameters by solving a set of C weighted least-squares
problems, where the consequents, fi, are local models that describe the nonlinear behavior of the system.
The consequent parameters are defined by θi = [aTi , bi]

T , and the regressors, given by the pattern matrix
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X, are denoted in extended form by Xe = [X, 1]. To weigh the degree of activation of each rule, Wi

is defined by a diagonal matrix with the firing strength of each rule, βi, computed with the membership
degrees of the fuzzy partition matrix, as given in (10.2). The OLS formulation is then defined as:

y = Xeθ + ϵ (10.11)
with ϵ representing the prediction error.
The least-squares solution is given by:

θi = [XT
e WiXe]

−1XT
e Wiy (10.12)

if the columns ofXe are linearly independent and themembership degrees, µik, are positive for all samples.
For ill-conditioned problems, least-squares estimation is solved in a similar way but the solution is not
unique.

10.4.4 Model Evaluation

For estimation of the model parameters, a validity measures approach is followed to determine the ad-
equate number of clusters and fuzziness parameter. For this problem, model selection will favor both
classification performance and interpretability.
To rank classifiers, the most widely used metrics are scalar performance measures based on the confusion
matrix, namely accuracy, precision, sensitivity or true positive rate (TPR), specificity and false positive rate
(FPR). In this way, being the fire class the positive class, the images are classified as described in Table 10.4.

Table 10.4: Confusion matrix categories.
Category Description
True Positive (TP) classified as fire, ground truth fire
False Negative (FN) classified as not fire, ground truth fire
False Positive (FP) classified as fire, ground truth not fire
True Negative (TN) classified as not fire, ground truth not fire

Table 10.5 presents the formulas of the performance measures employed.
Table 10.5: Formulas of the performance measures derived from the confusion matrix.

Accuracy Precision Specificity Sensitivity TPR FPR
TP+TNTP+FN+FP+TN TPTP+FP TNTN+FP TPTP+FN TPTP+FN FPFP+TN

However, for binary classifiers, by relying on a fixed classification threshold and being independent of
class priors, these measures can be misleading when working with unbalanced datasets. Taking this into
account, and recalling the model output (10.3) yields a continuous-valued output, this enables using the
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area under the receiver operating characteristic curve (AUC) [212], which allows the comparison ofmodels
with variable classification thresholds.
Regarding interpretability, it is key to have in mind that in fuzzy models derived from data, the number of
rules is defined by the number of clusters. Thus, the model structure should be kept simple, with a low
number of rules, for ease of interpretation.

10.4.5 Dataset Division

From the database acquired in the experimental trials (Table 10.2), a subset was selected to create to
better balanced dataset for this classification task, resulting in a total of 5315 samples of the fire class,
and 3762 of not fire. This dataset was split into two distinct subsets with approximately 65% for training
the models and 35% for testing. The data from the experiments presented in the previous sections was
divided as described in Table 10.6 for the training dataset, and in Table 10.7 for the testing dataset. Note
that while the same trial may be used for training and testing, the camera model and the respective frames
are considerably different, as demonstrated in the data analysis in section 10.3.3.
The training dataset is evenly divided, and includes an instance of each of tests presented beforehand. To
enable the models to learn an extended operating range of the sensor, i.e., to cover the complete extent
of the input space, situations from a real-context were included in the training set. From the several tests
performed at a festival, the data were split between the training and test datasets, and two additional
tests (5 and 6) in similar dynamic scenarios were included in the training set.

Table 10.6: Summary of the samples in the training dataset.
ID Description not fire fire

Test 1 SC660: Straw burning (platform) 302 698
Test 2 Vue: Straw burning (drone) 82 1418
Test 3 SC660: Tent burning (platform) 159 641
Test 3 Vue: Tent burning (platform) 159 401
Test 4 Vue: Summer festival (balloon) 616 -
Test 5 Street (static) 1114 -
Test 6 Aerial view (moving) 287 -
Training dataset (%) 2719 (46.3%) 3158 (53.7%)

For the testing dataset, the cases selected include the situations that are more relevant to evaluate the
performance of the model, using for validation part of the trials at the festival under the real operation
conditions.

Table 10.7: Summary of the samples in the testing dataset.
ID description not fire fire

Test 1 Vue: Straw burning (platform) 302 1698
Test 2 SC660: Straw burning (platform) 83 417
Test 4 Vue: Summer festival (balloon) 658 42
Testing dataset (%) 1043 (32.6%) 2157 (67.4%)
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10.4.6 Parameter Estimation

To define the model structure a grid search was performed by varying the number of clusters, C , between
2 and 8, and the fuzziness parameter,m, between 1.2 and 3.5 with 0.1 increments. Figure 10.18 presents
the accuracy results obtained for 500 iterations using the ordinary least-squares (OLS) method for the
estimation of the consequent parameters.

(a) Train: mean accuracy (b) Train: standard deviation

(c) Test: mean accuracy (d) Test: standard deviation
Figure 10.18: Accuracy results for 500 iterations.

The training results show that the models with highest mean accuracy have increased complexity with 6
to 8 clusters. However, by observing the distribution of the results it should be noted that the area with
lowest mean accuracy in training (Fig. 10.18a), is the one with highest standard deviation (Fig. 10.18b).
This indicates there are low complexity models which can achieve high accuracy as well.
Regarding the test results, models with 4 clusters have the highest mean accuracy (Fig. 10.18c), but con-
sidering the values of standard deviation (Fig. 10.18d), models with 3 and 8 rules can have similar perfor-
mance. Taking these aspects into account, a selection of models with good performance is presented in
Table 10.8.
While these measures give an indication of the accuracy of the models, the best models were selected
considering also the output response. Overall, the models achieve similar performance in training and
generalization wise.
This section starts by presenting the classification performance ofmodels selectedwith 3, 4, and 8 clusters,
which are compared with a univariate threshold heuristic, as suggested in section 10.3.3. Subsequently,
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Table 10.8: Model benchmarking for selected parameters (mean and standard deviation values of a totalof 500 iterations).
Dataset C m Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) AUC

Train
3
4
8

2.1
3.2
2.6

90.51±3.94
92.72±0.73
95.55±0.80

88.43±6.95
90.93±1.72
96.22±1.50

84.53±10.29
88.81±2.36
95.61±1.88

95.67±1.57
96.09±0.82
95.51±0.51

0.9607±0.0246
0.9700±0.0074
0.9841±0.0062

Test
3
4
8

2.1
3.2
2.6

85.48±2.07
87.81±0.34
86.95±1.38

96.11±6.95
99.83±1.72
99.85±1.50

92.83±7.14
99.70±0.87
99.74±0.87

81.93±0.40
82.06±0.31
80.77±2.03

0.9133±0.0174
0.9256±0.0169
0.9646±0.0094

section 10.4.8, explores the transparency of a selected fuzzy model with three rules to provide a bet-
ter understanding of the behavior of thermal cameras, presenting in detail the parameters of the model.
Moreover, the outputs of the fuzzy models before applying classification thresholds are analyzed for a set
of training and testing cases.

10.4.7 Performance Evaluation

To assess the models proposed following the fuzzy modeling approach, the classification performance
will be compared to a classifier with a linear heuristic threshold based on the gray percentage, using the
dataset division presented in section 10.4.4.
Based on the observation on the sensor response using the proposed features, as mentioned in sec-
tion 10.3.3, a simple classifier could be devised by establishing a heuristic to detect a fire outbreak when
the gray percentage exceeds a given threshold (δ). The sensitivity analysis of this approach is presented
in Table 10.9.
Table 10.10 presents the classification results of three fuzzy models selected. These models have very
similar performance in training and generalization wise, despite having a different model structure.
Table 10.9: Results of the gray heuristic for different thresholds (δ), and optimum threshold values (δ∗) forthe datasets previously used.
Dataset Samples δ∗ δ Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) TPR (%) FPR (%) AUC

Train 3157 (F)
2720 (NF) 0.232

0.500
0.232
0.065

75.91
94.18
80.42

97.18
96.13
74.26

98.09
95.66
60.88

56.79
92.84
97.24

56.79
92.84
97.24

1.91
4.34
39.12

0.9613

Test 2157 (F)
1043 (NF) 0.065

0.500
0.232
0.065

58.34
87.09
88.00

100.0
99.89
99.78

100.0
99.81
99.62

38.20
80.95
82.38

38.20
80.95
82.38

0.00
0.19
0.38

0.8606

Table 10.10: Results of selected fuzzy models with δ = 0.5.
Dataset Samples C m Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) TPR (%) FPR (%) AUC

Train 3157 (F)
2720 (NF)

3
4
8

2.1
3.2
2.6

94.33
94.93
96.19

95.26
96.79
97.38

94.56
96.40
97.02

94.14
93.66
95.47

94.14
93.66
95.47

5.44
3.60
2.98

0.9818
0.9825
0.9909

Test 2157 (F)
1043 (NF)

3
4
8

2.1
3.2
2.6

87.50
87.34
86.66

99.89
99.89
99.94

99.81
99.81
99.90

81.55
81.32
80.25

81.55
81.32
80.25

0.19
0.19
0.10

0.9186
0.9591
0.9740
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Considering the heuristic based on the gray levels, comparing the results of Table 10.9 for different thresh-
olds, it is clear this approach is sensitive to the threshold values. Furthermore, while in the datasets em-
ployed the threshold defined at 0.232 works well akin to the results presented for the fuzzy models, this
linear approach does not offer the same robustness. In different scenarios, the threshold required for
satisfactory classification performance could easily vary, as the lower AUC for the test dataset indicates.
Regarding the proposed fuzzy modeling approach, as indicated in Table 10.10 the models achieve good
training performance, with a slight decrease in testing but on the same order for all models. Therefore,
this limitation should not be simply attributed to generalization ability of the models.
Attending to the test results, it is important to take into account that the data from the controlled fire
experiments were captured using a frame rate of 15 fps. Having a high frame rate enables getting the full
picture of the behavior of the response of the thermal sensor to a fire ignition, but hinders the classification
performance of the classifier in situations where the sensor has a delay in response.
From literature review, there are various computer vision and expert systems approaches taken to the fire
detection problem, but most employ algorithms in indoor spaces, which is not the focus of this application.
Considering works aiming towards fire detection in large outdoor environments using visible range images,
[213] proposed a hierarchical pixel-based algorithm, obtaining a 93.98% TPR and a 4.56% FPR. [214]
propose an algorithm coupling logistic regression and temporal smoothing using features of size, motion,
and color information, achieving a 96.39% TPR and a 0.00% FPR. [99] present an algorithm using both
thermal and visible range sensor data, based on computer vision techniques such as dynamic background
subtraction and histogram-based segmentation, obtaining a 91.06% TPR and a 1.35% FPR.
While these works attain satisfactory results, their effectiveness is mostly demonstrated in images where
fire is detected at a close-range. Towards applications that require detection at long-distance, namely using
unmanned aerial systems, individual pixel-level classification approaches may be difficult to implement
when covering large areas, because the features in image data become more difficult to discern with
increasing distance.
A key objective of the proposed fuzzymodeling approach is to gain insight into the sensor response. There-
fore, for a better trade-off between classification performance and interpretability, the model selected for
analysis has 3 clusters and a fuzziness parameter of 2.1. Since the performancemeasures of this model are
within the range of the standard deviation presented in Table 10.8, the performance is not significantly
compromised by the decrease in model complexity. The response of this model is compared with the
models with 4 and 8 clusters presented in Table 10.10 further along.

10.4.8 Model Parameters

Themodel obtained bymeans of fuzzy clustering derived the antecedentmembership functions illustrated
in Fig. 10.19, with the cluster centers presented in Table 10.11.
The clusters identify three distinct fuzzy regions with a great degree of overlapping, which means the
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Table 10.11: Cluster centers.
red green gray

cluster x1 x2 x3

1 3.468 13.704 82.828
2 8.490 47.633 43.877
3 28.563 65.046 6.391

nonlinear relationships would not be trivial to obtain from simple heuristics. For cluster 1, the core of the
membership functions (MFs) is defined for low values of red and green, and high values of gray percentages.
For cluster 2, the core of the red MF is defined for low values, and is in the mid-range for green and gray,
with the support of these two MFs covering the full range with some degree of membership. For cluster
3, data points of the red and green features can take any value and low gray percentages.

Figure 10.19: Antecedent membership functions for cluster 1 (blue),cluster 2 (orange) and cluster 3 (yellow).

The consequent parameters obtained through least-squares estimation are summarized in Table 10.12.
Table 10.12: Consequent parameters.

rule red green gray offset
1 1.1 · 10−2 4.2 · 10−3 1.0 · 10−2 0.0

2 6.2 · 10−3 8.7 · 10−3 1.1 · 10−2 0.0

3 −3.5 · 10−3 1.0 · 10−3 2.1 · 10−2 0.0

For rule 1, the variables with strongest influence are the red and gray percentages, with the green having
lower order. For rules 2 and 3, the gray percentage has the strongest contribution. Since the MFs are
defined for positive values, the negative influence of the red parameter in rule 3 may indicate this rule
could be associated with not fire, the negative class (0).
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The fact that the gray percentage has a strong contribution in all the rules confirms this variable may be
associated to fire instances as discussed in the analysis in section 10.3.3. Nonetheless, the influence of the
red and green percentages in the three rules is evidence a multivariate algorithmmay be more appropriate
to model this system for a fire detection application.
The fuzzy model is derived for detecting fire outbreaks is defined as:

R1: If x1 is A11 and x2 is A12 and x3 is A13 then:
f1(x) = 1.1 · 10−2x1 + 4.2 · 10−3x2 + 1.0 · 10−2x3

R2: If x1 is A21 and x2 is A22 and x3 is A23 then:
f2(x) = 6.2 · 10−3x1 + 8.7 · 10−3x2 + 1.1 · 10−2x3

R3: If x1 is A31 and x2 is A32 and x3 is A33 then:
f3(x) = −3.5 · 10−3x1 + 1.0 · 10−3x2 + 2.1 · 10−2x3

To compute the model output, the influence of each rule is weighted with the degree of fulfillment as
given in eq. (10.3):

ŷ(x) =
β1f1 + β2f2 + β3f3

β1 + β2 + β3

In the following, the model output, ŷ, will be assessed and compared with the output of the models with
4 and 8 rules presented in table 10.10.

10.4.9 Training Results

In addition to the model evaluation results presented in Table 10.10, the output of the models will be
analyzed before applying the classification threshold of 0.5.
From the training dataset, two cases were selected, namely the drone test in a controlled fire environment
that depicts a fire situation, and a testwithout fire from the summer festival. Fig. 10.20 presents the output
results juxtaposed with the samples over time.
Observing Fig. 10.20, given the high accuracy of the models for this test, a fuzzy modeling approach
clearly outperforms a heuristic based on a threshold of 0.5 (δ) applied to the gray variable. Whereas for
the heuristic most of the samples would be misclassified, for the output of the fuzzy models most of the
samples are correctly classified, after applying a 0.5 threshold. Additionally, the fuzzy models cope better
with the stochastic variation of the samples, leading to a more stable classification output.
For a trial performed at the summer festival, in a situation without fire, the output results are illustrated
in Fig. 10.21.
This example illustrates the classification ability of the fuzzy models for situations in which the gray per-
centages have low representativity or are negligible, which are modeled by rule 3. While this rule could
be difficult to understand due to the high overlap in the antecedent membership functions, this example
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Figure 10.20: Training results: drone test.

Figure 10.21: Training results: festival without fire (baseline).

clarifies that it has a transparent and intuitive interpretation.

10.4.10 Testing Results

To assess the generalization of themodels, two cases will be discussed: a controlled fire casewhere images
were captured from a static platform, and a trial from the festival for validation with a real context case.
Fig. 10.22 depicts the results for a controlled fire case under static conditions. In this case, the delay in
response of the sensor causes a considerable part of the samples to be misclassified (approximately from
302 to 698), but afterwards the fuzzy models are able to make accurate classifications.
Moreover, the model with 8 rules starts having worse performance than the models with 3 and 4 rules,
with the decrease in gray percentage. Once again, for this case, a heuristic based on just the gray variable
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Figure 10.22: Testing results: platform (Vue).

would fail to classify most instances.
For the validation of the proposed models under real conditions, the model output is evaluated on a trial
from the festival where fire is detected, as illustrated in Fig. 10.23.

Figure 10.23: Testing results: outdoor festival (test 4).
As was to be expected, when there is a sudden increase in the gray percentage the models identify the
presence of fire. This behavior is associated with rule 1, as can be inferred from the MFs (Fig. 10.19) and
consequents (Table 10.12).
Considering the output results from the tests presented in this section, the classification is not impacted
significantly by the decrease in model complexity, with the model with 3 rules performing on par with the
models with 4 and 8 rules.
The examples demonstrate that a transparent fuzzy model with three rules is capable of classifying fire
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outbreaks despite the adaptive nature of the color scale. Moreover, the transparency of themodel enabled
the identification of three fuzzy regions derived from data that are easy to interpret and correlate with
the input variables for a set of different situations.
Attending to these results, as well as the overall performance (Table 10.10), the fuzzy models are able
to generalize well from known patterns and classify accurately fire outbreaks in dynamic scenarios in
real contexts.

10.5 Conclusion
The in-depth analysis of thermal imaging data provided key insights on the inner-workings of thermal
cameras, which were instrumental for feature engineering and the construction of features relevant to
the fire detection problem.
The proposed fuzzy modeling approach derived from data achieved high performance and generalization,
with low complexity models. The transparency of themodels created enabled a clear understanding of the
data patterns modeled and can be useful in the development of future work with this type of sensors. One
of the main advantages of employing this data-driven approach is that it is a flexible method that allows
model derivation based on data from different cameras (radiometric or nonradiometric), under different
setups and conditions.
Moreover, the features constructed from the thermal images demonstrate this type of data can be valuable
for the detection of fire outbreaks. Evaluating by the high specificity and precision of the models, false
positives are not a concern for this case, and the lower sensitivity is due to great extent to a 20 second
delay in the response of the sensor, which does not compromise the potential application, given that the
detection of a fire event, even with this delay, would still be valuable in a real application.
While some delay may be expected in thermal imaging sensors, the capture modes, such as video versus
single frames with a specified time-lapse, have a significant influence in the adaptation of the filter param-
eters, which are based on the camera firmware and calibration parameters. Further investigation should
be conducted to characterize this type of sensors, namely in what concerns saturation levels and the color
encoding schema.
Considering there are still many degrees of freedom to explore in this application, it is worthwhile to em-
ploy soft sensors approaches using thermal imaging sensors. In this respect, the fuzzy modeling approach,
due to its interpretability and generalization, provides clear advantages if compared to other research
avenues.
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Summary
This part delves into data curation approaches, opening the scope of this issue to more
broadly address fire management tasks in general, while also providing an example of its
application to fire data annotation. Chapter 11 proposes an expert-in-the-loop approach
to address automated data curation towards scaling the application of data-driven meth-
ods in safety-critical technologies in fire intelligence domains. Chapter 12 showcases
a purpose-built data annotation pipeline for fire images that combines clustering-based
algorithms with interpretable linguistic fuzzy models derived from expert knowledge.

183



184



11 | Expert-in-the-loop
Data Annotation

Contents
11.1 Introduction 186
11.2 Image-based Wildfire Management Tasks 187
11.3 Proposed Approach 187
11.4 Conclusion and Future Work 189

The material included in this chapter was previously first introduced and presented
as a proposal, with double-blind peer-review, at the Tackling Climate Change with
Machine Learning workshop at NeurIPS 2020.

Presented at:
M. J. Sousa, A. Moutinho, M. Almeida, Expert-in-the-loop Systems Towards Safety-
critical Machine Learning Technology in Wildfire Intelligence. NeurIPS 2020 Work-
shop on Tackling Climate Change with Machine Learning. (2020).

185



11.1 Introduction
Wildfires are a recurrent natural hazard on a global scale that has a brutal impact on the environment and
natural ecosystems, which can lead to disasters with dire impacts on communities [215]. As a result of
climate change, fire events are becoming more frequent and severe, with meteorological conditions of
high ignition propensity being more frequently met, leading to increased fire spotting, and rapid spread.
In addition, these conditions are verified over longer periods, extending fire seasons in several regions
worldwide.
To prevent and mitigate the devastating effects of wildfire events, it becomes urgent to detect fires in
an early stage and to monitor wildfires in near-real-time as the events unravel, providing enhanced situ-
ational awareness for decision-making and operational teams. In that sense, wildfire intelligence plays a
pivotal role, especially for high-risk areas such as wildland-urban-interface regions [216] and large-scale
wildfires [217]. For these reasons, there is a current demand for improvements and increased levels of
automation in the stages of pre-fire event, firefighting, and aftermath.
In this context, the breakthroughs in machine learning (ML) can be an enabling technology towards the
integration of artificial intelligence products in current decision support systems. More specifically, related
works have proposed ML solutions for image-based fire detection tasks [218, 219], however the quality
and limited size of image databases available often do not offer generalization guarantees for reliable
deployments in real contexts [114]. Although transfer learning and data augmentation techniques have
been explored in related work, the limitations in interpretability and transparency of black-box models
prevent effectively fine-tuning these models to solve existing shortcomings [114]. The lack of large-scale
databases for wildfire detection and monitoring tasks is a known hurdle in developing machine learning
algorithms with adequate generalization.
Considering that employing ML solutions for wildfire intelligence involves deployments in safety-critical
applications, the robustness and reliability of the models have yet to undergo significant developments.
Conversely, this may be achieved through high-quality data curation, despite not alleviating black-box
limitations, or through the exploration of algorithms with increased explainability, fine-tuning ability and
interpretability. However, both these scenarios call for the input of expert knowledge to develop accu-
rately annotated data, which is particularly nuanced in the field of wildfire management and operations,
and requires domain expertise as there is also high data uncertainty.
To address these issues, we propose the development of expert-in-the-loop systems that combine the
automation advantages provided bymachine learningwith the introduction of relevant domain knowledge
expertise. The main objective of the proposed approach is the development of semi-automated software
tools that can support data curation by wildfire experts. This solution can allow a better handling of
data uncertainty and improve the quality of data sources, with the ultimate objective of enabling the
development of large-scale databases for wildfire-related problems. More importantly the expert-in-the-
loop approach allows involving domain experts and end-users (e.g., researchers and public agencies) in
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the development procedure, thus improving the relevance of machine learning applications developed for
wildfire intelligence in real contexts.

11.2 Image-based Wildfire Management Tasks
Image data for wildfire-related tasks can have a broad spectrum of characteristics and modalities as these
can be collected e.g., from satellites, aerial vehicles, watchtowers, or ground teams. The latency associated
with these data types also varies and consequently, so does its timescales of application. From this plurality
arises a great breadth of opportunities for ML approaches to deal with high-dimensional data, but also
a great challenge for data curation. Herein, we outline several relevant tasks followed by a brief data
description.

Tasks Wildfire management involves four main stages: i) prevention, ii) preparedness, iii) response and
iv) recovery. The following tasks can extend to several of these stages and involve processing of large
amounts of image data, thus having a high potential interest and benefit from the usage of ML.

Risk assessment concerning environmental conditions and risk mapping based on land use and social
patterns;
Vegetation management to reduce fire severity, e.g. fuel mapping, monitoring of fuel breaks, or
tracking of vegetation fuel moisture content;
Wildfire detection and monitoring, e.g., early identification of flames and smoke plume, mapping of
the firefront(s), early detection of spot fires and identification of hot spots;
Post-event analyses, e.g., mapping burned areas, evaluation of possible subsequent cascading ef-
fects, e.g., erosion risks, and air quality estimation based on remote sensing.

Data The evolving datasets being developed comprise multimodal image data, currently in the visible
and thermal infrared bands, including images captured from ground teams, watchtowers, aircraft and high-
altitude balloons, which are exemplified in Fig. 11.1 (for visible range instances only). The image samples
comprise a diverse collection of situations, with most concerning real wildfire events and field experimen-
tal burns. To create a balanced and robust set of data, factors that may induce misclassifications are also
included such as clouds, fog or sunsets, as well as firefighting vehicles, power lines and various types of
operational teams.

11.3 Proposed Approach
The development of expert-in-the-loop systems aims to bridge the gap between machine learning au-
tomation (e.g. in classification, segmentation, or detection tasks) and the inclusion of relevant domain
knowledge expertise, so that data curation is relevant for wildfire intelligence in real-world scenarios and
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Figure 11.1: Samples of fire and not fire instances captured from ground teams, drones and high-altitudeballoons, along with aerial vehicles and teams in operational missions in a wide variety of scenarios andlighting conditions.
wildfire science research. Previous contributions in the literature have favored techniques that are well-
suited for real-time deployments despite having limitations in performance, in lack of transparency and
interpretability. However, those limitations hamper considerably the reliability and acceptance of end-
users of such techniques, hindering the deployment in safety-critical applications in real contexts.
This novel approach in wildfire related applications leverages the potential of exploring machine learning
and computer vision, and intelligent systems methods that have not been particularly designed for online
computational performance (in terms of speed/energy) in real-time deployments, but are rather accurate
despite computationally heavy and/or time-consuming. To harness the advantages of this approach, this
project aims to design expert-in-the-loop systems and develop software tools that can introduce domain
knowledge into the data curation and task design processes. To that end, this approach can be outlined
as exemplified in the diagram in Fig. 11.2.

data
selection

preprocessing image processing
(CV, ML, etc.)

analysis tools interpretation

target 
data

preprocessed 
data

annotated 
data

learning 
patterns

databases

expert 
validation

data curation

wildfire task 
definition

defined tasks

task refinement

expert 
assessment

Figure 11.2: Expert-in-the-loop system comprising a computational data annotationpipeline with expert feedback.
Domain expertise is introduced in two stages through two feedback loops: 1) task definition/refinement
— where experts define relevant tasks and refine these based on the results of the data curation pro-
cess (outer loop); and 2) expert validation and interpretation - where at the end of automated processing
pipeline, experts enable re-iteration and learning patterns on verified outputs (inner loop). Depending
on the task at hand, feature extraction, feature selection, detection and pixel-level segmentation tech-
niques used for semi-automated annotation can resort to several computer vision, machine learning and
a broad scope of intelligent systems approaches. Successful implementations of this approach should aim
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for obtaining increasingly accurate fine-grained outputs validated with cohorts of experts, which shall be
quantified with relevant evaluation metrics for quantitative benchmarking.
The key benefit of this data curation approach is to yield fine-grained annotated data sources for the
development of large-scale databases for wildfire-related problems. By being validated by domain experts,
it will also improve the relevance of subsequent machine learning applications developed for end-users
(e.g. wildfire management, firefighting and civil protection agencies, and researchers working on wildfire-
related topics).

11.4 Conclusion and Future Work
The solutions developed through the proposed approach will be an important stepping stone for data
curation and creating large-scale datasets for wildfire detection and monitoring. These datasets will open
opportunities for leveraging ML technologies in this context, as well as pave the way for relevant multi-
view data association [220] and autonomous robotics tasks in this domain [221]. ML along with emerging
technologies such as unmanned aerial vehicles and cube-sat systems are important enabling technologies
for near-real-time wildfire intelligence, which will have an essential role in decision support systems with
crucial impacts in the safety of at risk populations and environment protection.

Broader Impact
Real-time early fire detection and monitoring systems can prevent the loss of natural ecosystems respon-
sible for climate regulation through carbon sequestration, can help to avoid the occurrence of large burnt
areas, and the emission of greenhouse gases. Therefore, the integration, at different timescales, of data-
driven intelligent systems in decision support systems for firefighting and civil protection can contribute
to mitigate the social, cultural, environmental and economic effects associated with wildfires, contributing
to the United Nations Sustainable Development Goals.
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12.1 Introduction
The challenges in facing wildfires are increasing the demand for automatic surveillance systems. However,
current systems are typically prone to false alarms in real deployments, thus unreliable to response teams
because even false positives hinder the confidence in these solutions. Although several research efforts
have attempted to leverage the advances in deep learning in classification and segmentation tasks, the
performance and evaluation are hampered by the quality of existing image datasets. Limitations include,
e.g., the low number of samples and quality of image data, lack of representativity of real-world situa-
tions, or being heavily based on video frames, reducing variability. Moreover, datasets are often missing
annotations, limiting both the performance and the information extracted for real operations.

Figure 12.1: Overview of the fire data annotation pipeline:Color-based features across the HSL and YCbCr color spacesare used to model semantic classes.
To address this issue, this paper shifts focus from the usual fire detection architectures, to instead target
the development of a pipeline for fire data annotation through semantic segmentation. Towards creating
large-scale high-quality annotated datasets, this paper presents amethod to generate fine-grained fire seg-
mentations along with fire color labels, which can subsequently be validated by fire domain experts to pro-
duce reliable ground truth data. The proposed approach, depicted in Fig. 12.1, leverages the feature rich
representations of fire, namely in the HSL and YCbCr color spaces, that allow an insightful interpretation
that informs the color-based superpixel segmentation. Subsequently, interpretable rule-based linguistic
models are employed for pixel-wise classification, using statistical color attributes to infer which super-
pixels correspond to fire or not, and generate semantic labels descriptive of the colors represented. Our
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approach is evaluated against the Corsican Fire Database, demonstrating excellent results in fine-grained
segmentations. The proposed solution can cope with a wide array of real-contexts: e.g., with fire at long
distances, with firefighters in the field of operations, and in smoke situations. Where the performance
might exhibit some limitations, the interpretability and flexibility of this approach come into play, allowing
the expert to intuitively fine-tune the model output to improve the segmentation, and thus guaranteeing
the expert confidence in the annotation process. This novel approach extends the state-of-the-art on fine-
grained fire semantic segmentation for data annotation, which we believe is an instrumental step towards
building large-scale datasets for safety-critical deployments.

12.2 Related work
Image-based fire detection approaches have widely explored color-based techniques [222, 223], and re-
cent works have adopted learning-basedmethods [224–226]. Herein, we concentrate on image data from
the visible spectrum because its widespread availability allows a broader deployment. Contributions in this
domain targeting fire event detection generally design techniques for either flame or smoke [227]. Most
center on a single application, e.g., ground operations, watchtower systems, or aerial surveillance [228].
That means methods are considerably different, use distinct types of data sources, thus making these hard
to compare generalization-wise. For learning-based approaches, the scarce availability of curated datasets
currently presents a significant roadblock for scaling up their applications [226, 229]. Aiming for better
generalization and broader context applicability, this work pivots the attention to approaches that enable
building large-scale datasets, focusing on flame detection.
Data annotation is paramount for improving algorithm performance and embedding relevant informa-
tion for this application. However, the tendency in fire detection works has favored computational ef-
ficiency [230], rather than segmentation granularity [223, 231], hence being blindsided to its key role. In
contrast, our objective is to prioritize fine-grained segmentation to streamline the data annotation process.
Although state-of-the-art methods can support this goal, the task of defining ground truths for fire data
with meaningful information involves a high level of complexity and nuance.
Describing colors of fire in the wild calls for expert knowledge from fire domain specialists because it
involves a deep understanding of the natural and artificial fuels burning [232]. The role of this charac-
terization has utmost importance both in wildfire science and wildfire operations, e.g., as it relates to fire
intensity and severity. However, hand-crafted pixel-wise annotation is extremely time consuming, there-
fore semantic segmentation tools are crucial to simplify this procedure and assist experts in developing
ground truths.
Model interpretability. Being the experts involved in the validation of algorithm outputs, the fine-tuning
capacity and interpretability of the models are essential to leveraging their relevant inputs. For this reason,
in this work, we privilege interpretable ruled-based models that are fine-tunable if and whenever needed.
In this way, these systems provide higher flexibility in an early stage than black-box models, which could
require extensive manual correction cycles until starting generating high-quality outputs. That problem
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Figure 12.2: Side-by-side samples of fire images (colored) and respective ground truths (binary) of thereduced Fire ImageDateset used, including firefighting andwildland-urban interface elements, and varyingvisibility conditions, e.g., day, sunset, night and with smoke.

could discourage expert commitment in the data curation process, which is avoided using our explainable
and interpretable approach.

12.3 Dataset
The Corsican Fire Database (CFDB) is a public database of wildfire images with several labels that allows
the evaluation and comparison of algorithms related to wildfire detection [233]. As of this writing, despite
the authors intention for an evolving dataset, where users can upload new data for categorization, it
remains composed of initial data, attesting to the difficulty in developing these repositories. The database
comprises 500 images in the visible spectrum, 100 pairs of visible and near-infrared images, and 5 multi-
modal sequences with visible and near-infrared pairs. We benchmark our approach using a part of this
database.
The Fire Image Dataset. is a reduced dataset was used with 207 images from the 500 visible subset of the
CFDB to create a representative dataset with different scenarios (Fig. 12.2).
Samples were excluded due to low resolution, noise or image artifacts, or pixelization that reduced the
granularity of fire features. From these 207 images, 50 were used to develop and test the algorithm while
the remaining were used only for testing. Images without fire were not added since important real-world
contexts, e.g., sunsets, and presence of firefighting means are already portrayed in this dataset.
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Figure 12.3: Fire Data Annotation Pipeline. The proposed architecture is comprised of three core parts: i)Color Feature Engineering (Section 12.4.2), ii) Color-based Superpixel Segmentation (Section 12.4.3), and
iii) Interpretable Rule-base (Section 12.4.4). The first layer transforms the image data to theHSL and YCbCrcolor spaces, better suited for fire instances. The second layer uses a purpose-built segmentation methodthat generates superpixels and merges them into regions according to statistical color-based features.Then, the interpretable rule-base employs linguistic models to classify the merged regions, yielding thepixel-wise segmentation of fire and the corresponding color labels for each region. Subsequently, theresults can be reviewed by experts to validate and fine-tune new ground truths for fire image data.

12.4 Fire Data Annotation Pipeline
Data annotation can be addressed using semantic segmentation methods. In this work, we pose this prob-
lem under a two-stage approach: i) segmentation and ii) classification. The first concerns the segmentation
of image data that can be handled with, e.g., partitioning algorithms. The second deals with the classifica-
tion of segmented regions through assignment to categories according to their attributes. The objectives
of the proposed fire data annotation pipeline outlined in Fig. 12.3 are twofold: i) pixel-wise segmentation
of fire and ii) description of the fire color category.

12.4.1 Problem Formulation

Consider a sample image, I , encoded in a preset color space domain defined asD ∈ Rc, where c represents
the number of channels. Let X represent the space of image pixels and x represent a pixel of the image,
x ∈ X . To address the first objective of performing a pixel-wise segmentation of fire in an image, let
F represent the set of pixels belonging to the fire class, and N consist of the pixels that do not depict
fire. The ground truth defines the expert validated data, where both classes are, in this case binary and
mutually exclusive, i.e. x ∈ F or x ∈ N . Regarding the second objective of describing the color of fire, we
model four color categories, namely red, orange, yellow and other. Note that, unlike the first case, sets of
pixels belonging to a color subset {Cred, Corange, Cyellow, Cother} are harder to define in a crisp way, thus are
modeled with fuzzy sets.
The following sections detail the three layers of the proposed architecture (Section 12.4.2 - 12.4.4), and
the implementation details are discussed in Section 12.4.5.
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12.4.2 Color Feature Engineering

Seeing Fire Across Color Spaces.

As the objective is to segment the flame based on color, choosing relevant color spaces can be very helpful
when defining parameters that correspond to fire colors, thus, leading to better results. This is a particu-
larly important step for images with similar fire colors in non-fire regions and when there is smoke over
the flame, decreasing the perception of the fire colors even for human annotation. For these reasons, the
color spaces used are the HSL and the YCbCr. The HSL color space is easy to use and works well in sce-
narios with a high contrast between the flame and the background. The saturation and lightness channels
are more intuitive in defining fire colors and separating them from dark smoke (high saturation) and clouds
(low lightness). Moreover, the hue channel makes it easier to specify the range of colors for the linguistic
terms (e.g., red, orange, yellow). However, this color space is more challenging when it comes to images
with smoke in the scene or regions with similar colors to fire colors (Fig. 12.4). In these situations, the
YCbCr color space allows for an easier flame segmentation (Fig. 12.5) because of its ability to separate
the colors, but it is less interpretable than the HSL making its development more complex. Color-based
features derived from these datasets are employed in the two stages of the proposed pipeline, namely in
the segmentation and classification parts.

12.4.3 Color-based Superpixel Segmentation

The use of superpixels allows to segment an image by clustering pixels based on their color and proximity.
This technique can be very useful since superpixels can carry more information than pixels [234], adhere
better to the image boundaries and reduce the complexity of several image processing operations [235],
thus decreasing processing times.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Original (b) Hue (c) Saturation (d) Lightness
Figure 12.4: Fire features in theHSL color space. Visual display of eachHSL color channel for two differentimages.
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Table 12.1: Interpretable LinguisticModels. Description of the ruled-based systems designed for fire dataannotation, using the HSL and YCbCr color-features. The classification models have three inputs and onecommon output. Each input/output is defined with different linguistic terms and parameters, formingmembership functions. There are triangular (3 parameters) and trapezoidal (4 parameters) membershipfunctions. The HSL model has one additional output, fire color, to generate fire color category.
Input Output

Model Variable Linguistic terms Parameters Variable Linguistic terms Output parameters

HSL
Hue

Saturation
Lightness

red1, orange, yellow,
other, red2
low, high
low, medium, high

[0, 0, 0.03, 0.055]; [0.04, 0.09, 0.133]; [0.11, 0.16, 0.2];
[0.17, 0.25, 0.87, 0.96]; [0.9, 0.97, 1, 1];
[0, 0, 0.4, 0.65]; [0.545, 0.75, 1, 1];
[0, 0, 0.23, 0.39]; [0.23, 0.427, 0.85, 0.96]; [0.94, 0.965, 1, 1];

fire possibility
fire color

low, high
red, orange,
yellow, other

[0, 0, 0.3, 0.5]; [0.4, 0.7, 1, 1];
[0.5, 1, 1.75]; [1.25, 2, 2.75];
[2.25, 3, 3.75]; [3.25, 4, 4.5];

YCbCr
Luminance

Chrominance Blue
Chrominance Red

low, medium,
medium high, high
low, medium, high
low, medium, high

[0, 0, 0.365, 0.49]; [0.457, 0.5, 0.548, 0.594];
[0.548, 0.63, 0.72, 0.776]; [0.73, 0.8, 1, 1];
[0, 0, 0.435, 0.56]; [0.47, 0.527, 0.58, 0.6]; [0.446, 0.69, 1, 1];
[0, 0, 0.49, 0.625]; [0.58, 0.647, 0.69, 0.78]; [0.71, 0.826, 1, 1];

fire possibility low, medium,
medium high, high

[0, 0, 0.23, 0.33]; [0.27, 0.35, 0.53, 0.65];
[0.6, 0.65, 0.75, 0.8]; [0.75, 0.83, 1, 1];

Superpixel Algorithm.

The superpixels are generated using the simple linear iterative clustering (SLIC) algorithm [235] that allows
the specification of both the desired number of superpixels, Nsp, and their compactness, C . The number of
superpixels drives the granularity of the image partitioning, being higher with the increase in Nsp. In turn,
the compactness controls the shape of each element, with higher values creating more regularly shaped
superpixels (square like), and lower values creating more irregular shapes, which adhere better to intricate
image boundaries. Furthermore, the superpixels are defined as vectors in R3 in both HSL and YCbCr color
spaces, where each entry corresponds to the mean color of each channel (Hsp

j , Ssp
j , Lsp

j or Y sp
j , Cbspj , Crspj )

of the superpixel sp, with j ∈ [1, Nsp].

Merging Superpixels.

We propose a procedure that merges similar superpixels into regions. This method combines neighboring
superpixels that register a similar color shade. This is performed using the YCbCr color features as these

16 55.4 94.8 134.2 173.6 213 30 50.4 70.8 91.2 111.6 132 120 141.8 163.6 185.4 207.2 229

23 56.6 90.2 123.8 157.4 191 72 86 100 114 128 142 108 124 140 156 172 188

(a) Original (b) Luminance (c) Chrom. Blue (d) Chrom. Red
Figure 12.5: Fire features in the YCbCr color space. Visual display of each YCbCr color channel for twodifferent images.
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Figure 12.6: Detailed illustration of the superpixel merging procedure. Zoomed area shows how similarsuperpixels 1, 16 and 27 merge, creating region 1. Merging results in a region-defined image.

allow the separation of fire from other instances like smoke. Adjacent superpixels, j and i, are compared
based on their mean color (Y sp

j,i , Cbspj,i, Crspj,i) and merged if each entry of the pairwise difference is lower
or equal to a threshold {0.034, 0.1, 0.03} , as follows:

| Y sp
j − Y sp

i | ≤ 0.034 (12.1)
| Cbspj − Cbspi | ≤ 0.1 (12.2)
| Crspj − Crspi | ≤ 0.03 (12.3)

To exemplify this procedure, Fig. 12.6 illustrates the steps of the process and the final result of merging the
superpixels. Such operation allows the number of regions to decrease and, consequently, the processing
time, and eliminate certain superpixels that could be classified as fire colour.

12.4.4 Interpretable Rule-based Models

Color Perception

Humans describe colors using linguistic terms like red, green or pink, but color perception might differ
from person to person [236]. Likewise, image retrieval for search-based analyses is also based on key
categorical terms, namely color. Relevant fire characteristics are related to their color so the annotation of
these attributes is fundamental towards creating large-scale datasets with relevant information that can
be used in a wide range of fire detection scenarios.

Linguistic Models Architecture

In this work, we propose interpretable linguistic models, designed for fire segmentation and classifica-
tion of the superpixel regions yielded from the previous step. The rule-based architecture is build with
Mamdani-type fuzzy inference systems [237], that describe the rules of the knowledge basewith linguistic
terms. This architecture incorporates uncertainty and is able to bridge the gap between semantic descrip-
tion of colors and its numerical parametrization. The concept of the rules relies on the association of the
linguistic terms between both the modeling of the color-based features and the categorization of colors,
with the underlying range of values. Our approach leverages two complementary models, developed for
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the HSL and YCbCr color spaces and outlined in Table 12.1. Both models are defined with three inputs,
corresponding to the mean color of each channel for every region. The two models output a fire possibil-
ity per region, that is leveraged to perform the classification of the merged superpixels and achieve the
pixel-wise segmentation of fire in the images. In addition, the HSL model is able to describe fire color
categories to perform semantic segmentation of the colors in the image. The proposed architecture may
integrate both models in the data annotation pipeline (Fig.12.3), combining the HSL and YCbCr using a
weighted average or maximum operators, to generate a segmentation of fire. In parallel, the HSL model
generates fire color categories that can achieve the final semantic layers that also describe the color of
the fire.
The interpretable rule-base is built with simple and intuitive triangular and trapezoidal parametric func-
tions, that model the corresponding linguistic terms for inputs and outputs as follows. TheHSLmodel uses
terms describing levels of hue, saturation and lightness tomodel the fire possibility, i.e. low or high, and the
fire color category, which classifies a region to a corresponding color subset {Cred, Corange, Cyellow, Cother}.
The YCbCrmodel employs terms describing degrees of luminance, chrominance blue and chrominance red.
The knowledge-base comprises fourteen rules. The outputs of the rules are combined and transformed to
a crisp value representing the fire color possibility. The models generate continuous-valued outputs that
are converted to multi-class labels through the application of rounding thresholds. For classification of a
region as being fire the decision threshold, δ, is usually applied at 0.5. This value can be fine-tuned in the
validation procedure as will be discussed further along.

12.4.5 Implementation details

The proposed algorithm allows the flexible selection of three parameters. For segmentation (Section 12.4.3),
the number of superpixels,Nsp, and the compactness, C , which are defined within the algorithm. For clas-
sification (Section 12.4.4), a threshold is applied to the outputs generated in the semantic classification
of fire and the multi-class color categories. These parameters are established in the algorithm but can be
easily fine-tuned by experts upon validation.

Parameter selection

Concerning the segmentation part, the selected number of superpixels must ensure that the algorithm can
achieve a fine-grained segmentation. The number of superpixels drives the quality of the segmentation
in this regard. Since, by nature, flame shapes are very irregular and the image data might contain regions
of interest that are captured at long distances, if Nsp is too small the image partitioning results in larger
superpixels that do not adhere exclusively to the flames. This behavior is illustrated in Fig. 12.7, where in
the lower left corner of the samples presented we can distinctly observe that the superpixels can capture
the flames but also aggregate other information nearby. This would inherently degrade the quality of the
segmentation, but more importantly, it could prevent an accurate semantic segmentation because a mis-
leading mean color value of the superpixel could result in its misclassification. However, selecting higher
values of Nsp results in a larger number of increasingly small superpixels, as depicted in Fig. 12.7, which
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are harder to classify using the mean color statistics as these capture less context information. The value
established by default in our algorithm is 1000 as it is considered an adequate trade-off between these
factors. Regarding the compactness, since it controls the shape of the superpixels, it is particularly rele-
vant when segmenting irregular shapes like fire. The influence of varying this parameter can be observed
notably in Fig. 12.7, by comparing the samples on the upper right corner of left and right side images.
The effect of enforcing a higher compactness (depicted on the right side) could result in less fine-grained
semantic segmentation for both fire and fire colors. For this reason, the value of C was established as 1,
because it is the lowest value possible, making superpixels adhere better to irregular boundaries.

Figure 12.7: Comparision between different Nsp and C . The Nsp in thelower left corner of each image is 100 and 2000 in the upper right corner.Images on the left have a C equal to 1 and images on the right to 20.

Considering the proposed pipeline integrates two ruled-based models, there are two possible values for
the classification of the input in terms of the possibility of corresponding to a color similar to fire colors.
The ensemble classifier uses as decision function the weighted average or maximum operators, being
possible to define the weights and the strategy to apply. The proposed solution is intended to be fine-
tunable, so while a threshold on fire classification is set typically at 0.5, it can be adjusted if required. Our
experiments use a δ = 0.5 threshold for the fire segmentation, except when specified otherwise.
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(a) Original Image (b) Merged (c) Fire Possibility (d) Fire Color (e) Output (f) Ground truth
Figure 12.8: Examples for each step in real-world scenarios.

12.5 Experiments

12.5.1 Performance Evaluation

The Fire Image Dataset (Section 12.3) is a subset of the Corsican Fire Database (CFDB), which provides
pixel-level segmentations annotated by a single expert as reported in [233]. While the definition of the
regions corresponding to fire are complex to define and encompass a great degree of uncertainty, herein
we consider this unique source our ground truth.

Baseline

To evaluate the proposed architecture we assess several baseline approaches. The first and simpler ones
are based on the HSL model and the YCbCr model separately. We test the integrated approach, with the
combination of the two models with a Weighted average ensemble classifier, considering several weight
distributions. Subsequently, we also present results for the multi-model approach with an ensemble clas-
sification based on the Max Value operator.

Performance Measures

To evaluate the performance of the segmentation algorithms, we will use a set of different metrics that
enable the comparison with the ground truth data. For model assessment we will focus on three metrics
namely: Accuracy, Intersection over Union (IoU), and Dice coefficient. Themetrics consider: true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN). The words true and false refer to
whether the positives and negatives were correctly classified. For the fire data annotation purpose we
are interested in obtaining segmentations with rich information. Considering the outputs will be subse-
quently validated by experts, the oversegmentation while not ideal is not concerning, since these can be
easily corrected through fine-tuning or by specifying which regions of superpixels were misclassified and
annotating the true label. In the following, we evaluate cases of interest showcasing the capabilities of the
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proposed method, along with the identification of the most challenging scenarios that are likely to require
expert annotation.

12.5.2 Results Evaluation

To demonstrate the capabilities of the proposed algorithm, a set of representative examples was selected
for analysis. The examples depicted in Fig. 12.8, showcase the performance of the internal steps of the
semantic segmentation for three distinct scenarios. The figure represents the pipeline by the first present-
ing the original of each image, followed by the merged superpixel segmentation. This step already was
designed to target the separation from fire from the surrounding context so it already gives a close and
granular partitioning of the image, capturing the fire instances even when these are at long distances and
covered by smoke. Next, the ruled-based models generate the classification of the superpixels accord-
ing to fire possibility, with higher values (brighter in the image), representing the superpixels that will be
classified with the fire label. The HSL linguistic model also classifies the fire colors in the image, which
relates to fire intensity and severity. By comparison with the original image, it can be observed the super-
pixel approach combined with the fire color classification is able to identify all possible colors in the first
two sample images, and correctly attributes the other color label to the remainder of the scene. By in-
tersecting both the fire classification with the color classification, we can automatically generate fire data
annotations that closely approximate the expert annotated data, but with richer information concerning
the color characteristics.
Regarding limitations of the color-based approach, as expected scene objects resembling fire colors are
more likely to be captured by the propose segmentation. However, such cases as depicted in Fig. 12.9,
like the sunset and firefighting elements are normally likely to require expert annotation, or need to be
complemented by other algorithms for detection of other objects in the scene.

12.5.3 Understanding the Architecture

Whilemost parameters in the architecture are generically preset, the proposed architecture is interpretable
and can be fine-tuned according to themore complex scenarios. For instance, for the image represented in
Fig. 12.4 obscured by smoke, the fine-tuning of the classification threshold can improve the final semantic
segmentation as is illustrated in Fig. 12.10.
The design process described throughout this paper was evaluated with the incremental assembly of its
building blocks. Table 12.2 presents the ablation study with the overall results for each model, including
variants of the pipeline proposed for semantic segmentation of fire. As represented in bold, the best
results were achieved for the multi-model approach using the maximum value operator and by lowering
the classification threshold to 0.4.
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Table 12.2: Ablation study for model comparison.
Model δ Accuracy IoU Dice
HSL HSL model 0.5 93.39 62.49 73.92
YCbCr YCbCr model 0.5 91.58 56.68 69.82

Weighted
0.4 HSL + 0.6 YCbCr
0.3 HSL + 0.7 YCbCr
0.2 HSL + 0.8 YCbCr

0.5
0.5
0.5

93.16
93.01
92.81

61.52
61.00
60.13

73.66
73.29
72.63

Max Value max(HSL,YCbCr) 0.5
0.4

93.47
94.04

66.51
73.53

77.59
82.63

(a) Original (b) Output (c) Ground Truth
Figure 12.9: Examples of limitations in real-world scenes.

12.6 Conclusion
This paper introduces a novel pipeline for fire data annotation that enables semantic segmentation of
fire and the pixel-wise annotation of relevant color characteristics. The architecture proposed leverages a
purpose-built algorithm that combines color-based superpixel segmentationwith interpretable rule-based
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(a) Threshold, δ = 0.5 (b) Threshold, δ = 0.4

Figure 12.10: Fine-tuning of fire classification threshold for improving the semantic segmentation.
models that allow generating pixel-wise semantic labels of fire and of fire colors in the images. We demon-
strate that the proposed approach is able to obtain fine-grained semantic segmentations and discuss the
limitation in challenging real-world scenarios. Our solution has key advantages due to its fine-tuning ability
and interpretable nature, which enables the close involvement of fire domain experts in the validation of
new ground truth data for a broad array of fire detection applications. Our approach to fire data annotation
aims to streamline this procedure, towards the creation of high-quality large-scale datasets that can allow
robust deployments in safety-critical real-world scenarios. Future work will encompass development of
automated methods for generating the desired color palettes to ensure a close-set segmentation task,
as well as evolving the color modeling approach, namely using fuzzy clustering-based and fuzzy granular
modeling methods.
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Summary
The final part of this thesis closes with the conclusions and reflects on future directions
stemming from this work and beyond this research. Chapter 13 starts by presenting
a summary highlighting the main contributions and key takeaways. Subsequently, fu-
ture work is discussed with considerations covering future research, development and
deployment, as well as the outlook for implementation and the pathway to impact of the
proposed contributions.
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This thesis covers the multidisciplinary body of research conducted on the development
of aerial networked environmental monitoring systems for wildfire detection and moni-
toring. The multifaceted nature of this work resulted in substantial contributions along
the main research questions explored, which are summarized and highlighted in this final
chapter. Herein, we draw themain takeaways from this investigation and discuss broader
considerations, such as directions of future work and the general outlook for bringing this
type of system to real-world deployments.
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13.1 Summary and Conclusions
This thesis presented a comprehensive approach to devise intelligent wildfire detection and monitoring
systems based on decentralized networks of aerial robots. Several advances were achieved namely in the
scopes of optimization of cooperative robotics systems and intelligent systems for data-driven wildfire
detection and monitoring. This was accomplished through research on the four main topics set forth in
the introduction:
T1 Development of multimodal networks of sensors, improving performance and robustness using de-

centralized approaches;
T2 Novel feature engineering approaches for wildfire detection;
T3 Multimodal data-driven intelligent systems;
T4 Data curation approaches for annotation of fire image data;

Part II - Decentralized Networked Systems focused on approaches to devise environmental monitoring
networks that can adapt according to the environment changes, and provide wildfire intelligence in real-
time. In this context, a primary concern centered on developing systems that would embody high levels
of automation, flexibility and versatility. To that end, the proposed methods tackled the design of aerial
networks (Chapter 5) and the coordination of multiple decentralized networks operating over several re-
gions (Chapter 6).
The proposedmethods demonstrated novel ways of designing systems for resource-constrained scenarios
like wildfire monitoring where the extensive spatial coverage needs to be reconciled with the realistic
limitations of available aerial surveillance means. Moreover, as the implementation of these solutions
grows over the next decade, it is important that systems are highly flexible, adaptive and versatile so
that the required infrastructure investments are the most effective. In that sense, this thesis argues that
building for redundancy while not overdimensioning systems is a key consideration in the development
of such environmental monitoring networks. Furthermore, with management challenges increasing due
to the interaction between several complex systems of systems, the coordination strategies relying on
cooperative and collaborative approaches are essential for the establishing of resilient operations.
Part III - Multimodal Robotic Perception delved into the investigation of multimodal sensor solutions for
data processing pipelines that have reduced computational burden, and are robust to failure modes that
occur in the real-world. This required extensive experiments to assess commercial-off-the-shelf cameras
that could provide adequate wildfire detection capabilities in deployment conditions. In this context, this
thesis presents an in-depth study of the capabilities of thermal cameras in fire situations focused on its
application in autonomous robotics implementation (Chapter 7). Moreover, in the same vein, a novel
multimodal dataset is presented resulting from field experiments (Chapter 8).
The analyses of experimental data were essential for extending the knowledge on the inner-workings of
thermal cameras, understanding how to implement data processing schema that can provide performance
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guarantees in real scenarios, and devise novel data modeling approaches for fire detection applications.
In this context, the benefits of leveraging multimodal sensor payloads for UAV-based fire detection and
monitoring are underscored throughout this thesis, due to the complementary capabilities of thermal and
visible range sensors and their ability to provide different detection modes. These are crucial features for
diversifying the situations where these solutions can be effective, e.g., early detection, active fire moni-
toring and monitoring of hotspots. One key takeaway from this process was the instrumental role color
encoding schema have in processing raw thermal data that affect the reliability of all downstream tasks
(e.g., georeferencing and fire front mapping). Additionally, harnessing different types of color encoding
schema and color palettes can be a valuable asset for robot navigation in hazardous environments like
wildfire support operations. In that sense, theMAVFire dataset developed in this thesis aims to contribute
to increase the resources available to the robotics community for enabling further work in applications
related to wildfires, which are still a prevalent research gap.
Part IV - Intelligent Fire Detection and Monitoring was devoted to developing data-driven intelligent sys-
tems based on thermal (Chapter 9) and visible range data (Chapter 10). For this purpose, the main concern
was again to develop data processing pipelines that have reduced computational burden, and are robust
to failure modes that occur in the real-world. With the goal of improving performance in deployment
conditions, the solutions also had to tradeoff between having energy constraints and allowing for fast
processing speed so that these could be implemented onboard aerial vehicles.
Concerning thermal imaging data, knowledge of the sensor inner-working was fundamental to select ap-
propriate data collection settings and to devise feature engineering techniques. This allowed the data
modeling steps to be more effective and as a result the clustering-based fuzzy models developed based
on that data have a low computational burden and high interpretability. A key takeaway in this regard
is that the access of thermal image data in their raw format is a requirement for the implementation of
the proposed solutions. Therefore, future dataset releases for this application should ensure access to
the raw formats. Regarding the development of data processing pipelines for visual-range data, while the
approach using transfer learning was generally successful it also allowed for the identification of several
limitations stemming from the quality of the datasets openly available for this purpose. To address that
gap, the last part of this work also presented methods towards scaling database development efforts.
Part V - Data Curation Approaches investigated methods to scale data annotation by means of automated
computer vision and intelligent systems techniques (Chapter 11 and Chapter 12). In this case, the princi-
pal aim was to build data curation pipelines that would enable creating large-scale datasets, and include
relevant annotations in a streamlinedmanner. In contrast with themethods proposed in Part IV, in this con-
text where data processing is performed offline, the goals prioritized fine-grained annotation performance
over processing speed, while not imposing particular energy constraints on the methods employed.
To address this issue, a key takeaway from this work concerns the relevance of including domain scien-
tists with wildfire expertise in the data annotation processes, via expert-in-the-loop approaches as the
ones proposed in this thesis. This is essential in the processes of scoping applications where data-driven
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services leveraging intelligent systems will be of most value, as well as in validating data annotations
generated by those automated systems, thus producing sound datasets for this field. Another important
consideration is the role interpretability and explainability in bridging the understanding between domains
and in facilitating the identification of model limitations or flaws early on in the development process. In
that sense, approaches that incorporate linguistic elements for description of the models help make the
models more accessible for a wide range of end-users.
Overall, the research resulting from this work contributed to advance several dimensions in wildfire de-
tection and monitoring systems. Subsequently, this work can be further developed to be integrated in
decision support systems for firefighters and civil protection agencies, which can lead to a better resource
allocation. Being wildfire detection and monitoring a very complex application, many of the research av-
enues remain open, with new questions also stemming from this investigation for future work.

13.2 Future Directions and Outlook
Wildfire intelligence and advanced technologies are pivotal for addressing the ongoing and growing chal-
lenges in wildfire management, and the emergence of novel solutions with scalability, flexibility and adapt-
ability is crucial for sustainable implementation. The major gaps in early-warning systems and real-time
monitoring suffer greatly from the disproportional imbalance between available resources for prepared-
ness and response and the wide-ranging threat this hazard carries despite its seasonal intermittence.
In this context, autonomous robotics, intelligent systems and large-scale optimization techniques can con-
tribute to address numerous logistical, operational and decision-making bottlenecks that hinder an ef-
ficient allocation of available resources and the sustained expansion of wildfire safety infrastructure to
protect underserved communities in rural and isolated areas.
With the integration of increasingly sophisticated technologies, such complexity needs to be addressed by
evolving paradigms in systems engineering, particularly, in systems of systems engineering. This is required
in order to continuously reconcile the plethora of existing legacy infrastructures, meet the impending
needs for modernization and upgrades in systems and processes, and the emergence of novel solutions
that must offer performance guarantees in safety-critical contexts.
At the heart of such developments are data-driven technologies, resources and infrastructure to support
decision-making informed and grounded by scientific evidence. The natural disasters related to large
wildfire events in recent years have spurred an increased awareness towards the necessity of building
bridges betweenmultidisciplinary fields to address this complex problem, e.g., academia, industry, national
agencies, policy-makers, first responders and civil society.
In this context, a decisive catalyzer of such developments has been the significant public funding commit-
ted towards scientific Research, Development and Innovation and the investment in upgrading national
Defense and Civil infrastructures and operations for wildfire preparedness, response, and civil protection.
However, the strategic approach remains primarily human-centric, requiring an extensive mobilization
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of resources ad hoc — as a function of forecasted risk — as opposed to human-in-the-loop approaches
that leverage data-centric solutions. In that sense, there remains a long path ahead for transitioning from
human-informed operations to data-informed operations.
Albeit the significant confluence of efforts in recent years from public, private and governmental sectors
to advance solutions leveraging data, there are still difficulties in aggregating relevant databases and pro-
vide ample data accessibility. Although, European- and National-level policies for scientific dissemination
already impose relevant guidelines for open data sharing practices, even when implemented, these result
in self-contained and sparsely hosted data sources, which are hard to relate and integrate with ease.
To overcome these issues, beyond a sustained continuity of ongoing research and technological innovation
programs, a joint strategy on data governance for wildfire management is key to achieve a critical mass,
involving the vast and diverse breadth of cross-cutting fields and stakeholders engaged in this area. This
leap forward is essential for maturing robotics and intelligent systems solutions for this area of application.

13.2.1 From Research to Deployment Roadmap

To reflect on the future developments, it is useful to frame this work in the Technology Readiness Level
(TRL) framework [238], depicted in Fig. 13.1 along with a scheme relating those with resources, stakehold-
ers and funding. This thesis has proposed several contributions in early stage research and field testing,
comprehending TRL 1-4, with different levels achieved for each of themodules of the system architecture.
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Figure 13.1: Resources availability for innovation at various TRLs, depicting “the valley of death”around TRL 4-6. Adapted from [239].

On the one hand, for some of the proposed methodological and algorithmic advances, the progress cen-
tered on developing new concepts and validating them in simulation. On the other hand, research into
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intelligent data-driven sensors already achieved promising results with real-world data, either from real
fire events, or collected in dedicated laboratory tests and experimental burns in field trials.
With respect to research avenues to be explored in the future, extending the current computational in-
telligence approaches has extensive opportunities to be leveraged further. Specific examples include the
following topics: (i) planning and design of UAV fleet operations; (ii) improving robustness, explainability
and interpretability of intelligent sensors; (iii) sensor-driven robot autonomy; (iv) expert-in-the-loop data
annotation for creating large-scale datasets for wildfire management tasks.
An important consideration taken into account when choosing evolutionary computing approaches for
large-scale optimization problems pertained that as the problem statements converge to approximate
more realistic scenarios the complexity of the problems will also increase considerably. In that sense, the
methodologies are well-suited such discrete optimization problems. Relevant elements to incorporate for
aerial surveillance planning include, but are not limited to, stationary ground-based camera networks, road
network and surveillance patrols.
With the aim of using intelligent systems in time- and safety-critical situations, the role of robustness,
explainability and interpretability play a more prominent role in ensuring that algorithms, models and
systems have appropriate traceability for accountability concerns. In that vein, the extension beyond
the core scientific areas addressed in this thesis to adjacent fields like uncertainty quantification and risk
assessment, human-computer interaction and decision support systems are relevant additional directions
in future research.
For sensor-driven robot autonomy, significant developments can be explored in, e.g., multimodal percep-
tion in dynamic environments, cognitive robotics and decision-making and multi-robot risk-aware plan-
ning under uncertainty. These areas require increased computational-intensive tasks and communications.
Therefore, the dimensions of how to devise algorithms and robotics pipelines that can reconcile fast and
high-frequency execution with edge computing under energy constraints are key topics for future work.
In addition to the aforementioned necessary efforts in building database resources and infrastructures that
can support data-centric services, scaling the capacity to annotate large amounts of data will then be fun-
damental. To that end, given that relevant datasets will often need to combine remote sensing and in-situ
measurements to develop sound ground truth data, involving domain experts in devising such annotation
schema will have a prominent effect for attaining high-quality end results. In that sense, expert-in-the-
loop approaches harnessing automatic machine learning and computer vision methods and incorporating
active learning should be explored to make these onerous tasks less cumbersome and more worthwhile.
Concerning development and deployment, “the valley of death” phase (see Fig. 13.1) represents a significant
hurdle for the progress towards implementation. This stage requires increased synergies between stake-
holders in the public and private sectors for co-investment and co-creation of technological solutions. At
this juncture, aspects that transcend the scientific and technical sphere come into consideration, namely
competing societal development priorities, rawmaterials availability and supply chain bottlenecks, market
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demand and convergence to data-centric ecosystems, regulatory and operational aspects concerning the
use of drones in civil applications and the use of data and artificial intelligence in public interest domains.

13.2.2 Implementation Considerations: Enablers and Barriers

Several trends over the last decade have contributed to a growing array of enabling technologies to sup-
port the implementation of cyber-physical systems that can provide enhanced environmental monitoring.
The evolution of devices for remote sensing, the boom in computing, data and artificial intelligence, the
breakthroughs in aerospace industry — from commercially-of-the-shelf drone technology to more sustain-
able satellite launch programs — and the important policy agenda for the green economy.
To large extent, such developments have even led to a fair share of technopositivism, though recent events
and the current state of affairs call for a reflection of important enablers and barriers at stake that affect
the ongoing development and future conjectures.
Recent years have seen a global pandemic lead to massive lockdowns that slowed down the technologi-
cal industries, and the aftermath of those events is still very present in the economic environment with
looming recession or stagnant growth perspectives worldwide.
The pressures of war in the geopolitical context also added to the economic strains particularly due to the
energy and international trade bottlenecks. Furthermore, the use of aerial robotics in warfare has scaled
up in recent conflicts, leading to less availability of drone technologies for research and development
purposes or for civilian applications. Additionally, the long-standing semiconductor shortage has led to an
upturn in the decrease in costs in most electronics-based resources, impacting the cost and actual market
availability of all derived devices.
The lack of hardware availability in the last few years has slowed down developments in the robotics com-
munity, given that lead times to acquire single-board edge computing devices can take several months
and prices for such devices or standard flight controllers have increased twofold or more. This has consid-
erable implications particularly for multi-robot systems development due the multiplication of hardware
resources that is necessary for integration stages. The increase in upfront costs leads to greater barriers
for organizations with stringent funding constraints like academic laboratories or small businesses, which
are predominantly the driving force in the development stage.
At the same time, the sustained commitment from the open-source robotics community, through orga-
nizations like Open Robotics and Dronecode Foundation, continue to have a pivotal role in advancing
the implementation of robotics technologies. These collaborations towards building shared resources
and tools have established cornerstone open standards that are instrumental for interoperability between
stakeholders. These standards are endorsed and widely adopted by large semiconductor manufacturers,
hardware and software companies, and drone engineering companies.
The principal barrier faced for deployment and implementation is the current regulatory aspect for the
operation of unmanned aerial systems. Aerial safety agencies worldwide are evolving regulations to ac-
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commodate the safe operation of these systems in the airspaces traditionally used by crewed aircraft, e.g.,
in the scope of U-space. However, this does not include the sphere of operations in the stratosphere,
where traditional aircraft do not fly, but high-altitude pseudo-satellites (HAPS) can have an important role.
In this context, the HAPS Alliance established an association of HAPS manufacturers and end-users, in-
cluding telecommunications, technology, aviation and aerospace enterprises, e.g., AIRBUS, Aerostar and
Nokia. The HAPS Alliance advocates for the inclusion of HAPS in the new regulatory frameworks, which is
essential to unlock investment from the private sector to propel the development and deployment stages.
Concerning the uptake of drone and HAPS technologies in wildfire detection monitoring tasks, there has
been initial efforts over the last few years. Under the umbrella of air force operations for wildfire surveil-
lance, there have been significant efforts in implementing drone-based solutions. However, given the
level of maturity of the field some solutions have hit setbacks, and the lack of regulations to allow ser-
vice providers to market beyond-line-of-sight missions is still a barrier for the growth of these segments.
The leap through “the valley of death” is the immediate hurdle towards implementation, and collaborations
in developing and testing an integrated system and a feasible prototype system are crucial next steps.

13.2.3 Pathway to Impact

Regarding research impacts, the investigation on both i) data-focusedmethods and ii) deployment-focused
methods can enable making significant strides towards reliable deployments of AI approaches to address
wildfire detection and monitoring tasks. On the one hand, an important contribution of this work will be
leveraging the data collection from field experiments and the proposed data curation methods to provide
annotated datasets to be open sourced to the R&D community. On the other hand, our aim to develop
methods ready to be efficiently deployed on aerial robots will open a path for approaching the data-driven
fire detection methods with application constraints as the driving aspects considered for establishing ap-
propriate model requirements, which has seen limited study in the research community so far.
In terms of future implementation, the rapid detection of an original fire event ignition significantly in-
creases the efficiency of a first intervention to avoid the occurrence of large burnt areas with the dramatic
social, cultural, environmental and economic impacts associated. However, with the drawbacks associated
with fire suppression practices for the prolonged accumulation of wild fuels, increased wildfire intelligence
can have a central role in decision-making. In that sense, data-driven services can better inform emergency
response strategies to allow an intelligent use of fire to increase territorial resilience and prevent the oc-
currence of large fire events.
The proposed systemmay be included as a module for wildfire detection of decision support systems with
better performance when compared with the systems currently used, in terms of early detection and of
false alerts. Additionally, considering that spotting is one of the most relevant mechanisms of fire spread
in the largest wind-driven wildfire events registered, the automatic detection of spot fires at non-short
distances is much more efficient since the focus of attention is typically on the original occurrence. Hence,
an early intervention on spot fires may avoid significant impacts.
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This thesis aimed to contribute to pressing societal challenges by addressing wildfire response issues re-
lated to three objectives of the United Nations Sustainable Development Goals (2030 Agenda) [240]:

Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable — as lives and
goods may be saved by an early intervention because firefighting operations will be more efficient,
thus being able of saving people and communities;
Goal 13: Take urgent action to combat climate change and its impacts — as the burned area and the
consequent impacts may be reduced;
Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage
forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss —
since most wildfires have an anthropogenic origin and the burnt area and fire intensity registered
currently in some countries like Portugal is not natural.
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